Skip to main content

Hawking's radiation and wormholes


" The Sombrero Galaxy" (M-104)
(Picture I)

http://crisisofdemocracticstates.blogspot.fi/p/what-actually-means-hawkings-radiation.html

Kimmo Huosionmaa

When we are looking at texts about Black Holes, we sometimes face the term "Hawking's radiation". But what that term means? When we are trying to Google that term, we would meet the texts, where black holes mentioned to lost from existence, by sending the "Hawking's radiation". And maybe we can now understand that term. The term "Hawking's radiation" means that sometimes one photon would flee from that supermassive piece. In this case, the black hole needs other stars or material around it, and that mass what this black hole sucks in it, that black hole can easily compensate the lost photons.


 But the situation changes when the black hole would transfer to absolute empty space, where is not even light or electrons around it. There would happen the case, that the black hole will be steamed away because of the electrons or photons are flying from that piece. When we are talking about material, also the photons and electrons have mass, and when the structure where even the light cannot flee, would pull the electrons and photons inside it, would it get more mass for it. Photons and electrons are actually same particles and the speed or energy level of those particles separate them from each other.


When we are thinking about my favorite thing, the wormhole or "Einstein-Rose bridge" we can say that forming that channel across the universe, should the black hole find another black hole, and then those black holes must start to oscillate with the same frequency. That would make possible to create that channel across the universe. But when we are thinking about traveling across that channel, would there be one thing sure. That would not dangerous, because of the "Einstein-Rose bridge" can forming between two black holes. And when something would come out from another side of the channel, would the black hole start to pull that thing again in it. And that means that the traveler would travel easily out from that channel. But this works only if those black holes would have the same mass.


If another black hole would be bigger than another, the results would be devastating.  If the black hole what sends the particle to the wormhole is bigger, it works like the super cannon, what can accelerate the particle at very high speed. And if something comes out from wormhole with the speed of light, would the result be that impact energy would destroy the planet immediately. When the case would turn that receiving black hole would be bigger, the piece what would send thru that tunnel, would it snap back to the sender with destructive results, and the  If human race would sometimes use wormholes for traveling across the universe, we must be sure, that those black holes would be the same size.


This means that traveling thru the electromagnetic wormholes are just in the level of theory. When we are thinking about traveling thru that tube, we must send the spacecraft to the targeted solar system, and then it would make the electromagnetic wormhole, and the similar singularity would be produced on the Earth, and that would allow traveling between stars. But first, we must send the spacecraft to another star, and it would take very long time. There is one thing what we ever thought, and that is, the ship what travels thru those "bridges" should across the central point of the wormhole, that it could travel to another side of that tube. And that can be done by using rockets to give more speed to our fictional spacecraft. When we are talking about intergalactic traveling, we can make wormhole near the center of our galaxy, and then drive the spacecraft thru that supermassive black hole. and if there is a wormhole between two supermassive black holes would the travel be very calm.


But if the partner is the normal black hole, would the result be, that spacecraft would travel very roughly in somewhere where we ever thought to send that fictional spaceship. This text is, of course, hypothetical thinking about the world of wormholes, and I used that space trip as an example how difficult is to make those trips thru the wormhole safely. And in the real life would happen very badly, because there might be no wormhole between two black holes.


And actually, we don't even know where those roads between two black holes would end, and that means that the trip across that channel would be like random, and we cannot be sure, where we would send that hypothetical spaceship if we would find small enough black hole, what we could cope with our own technology. In that case, we would find the very small black hole, and then we would create the electromagnetic black hole, what would oscillate with the same frequency, and of course, that artificial black hole should be the same size than the targeted black hole.


If we are thinking carefully that ship what travels thru the black holes, must send across the central point of the wormhole, and that would be key to travel across those channels. If the ship would stay in the center point of the wormhole,  it would stay in there forever. And then the use of motors would transfer it to another black hole. But this is only fiction, and good day to spend time with thinking about those phenomena, what are actually the most high energy thing in the universe.

Sources:

https://en.wikipedia.org/wiki/Hawking_radiation

Picture I

https://upload.wikimedia.org/wikipedia/commons/thumb/5/5e/M104_ngc4594_sombrero_galaxy_hi-res.jpg/1200px-M104_ngc4594_sombrero_galaxy_hi-res.jpg

http://crisisofdemocracticstates.blogspot.fi/p/what-actually-means-hawkings-radiation.html

Comments

Popular posts from this blog

Chinese innovations and space lasers are interesting combinations.

Above: "Tiangong is China's operational space station located in low Earth orbit. (Image credit: Alejomiranda via Getty Images)" (Scpace.com, China's space station, Tiangong: A complete guide) Chinese are close to making nuclear-powered spacecraft.  Almost every day, we can read about Chinese technical advances. So are, the Chinese more innovative than Western people? Or is there some kind of difference in culture and morale between Western and Chinese societies? The Chinese superiority in hypersonic technology is one of the things that tells something about the Chinese way of making things.  In China, the mission means. And the only thing that means is mission. That means that things like budgets and safety orders are far different from Western standards. If some project serves the Chinese communist party and PLA (People's Liberation Army) that guarantees unlimited resources for those projects. Chinese authorities must not care about the public opinion.  If we th

Iron Dome is one of the most effective air defense systems.

The Iron Dome is a missile defense system whose missiles operate with highly sophisticated and effective artificial intelligence. The power of this missile defense base is in selective fire. The system calculates the incoming missile's trajectory. And it shoots only missiles that will hit the inhabited area. The system saves missiles and focuses defense on areas that mean something. The system shares the incoming missiles in, maybe two groups. Another is harmless and another is harmful.  Things like killer drones are also problematic because their trajectories are harder to calculate than ballistic missiles. The thing that makes drones dangerous is that they can make masks for ballistic missiles. And even if those drones are slow, all of them must be shot down.  The thing is that the cooperation between drone swarms and ballistic missiles is the next danger in conflict areas. In the film, you can see how drones make light images of the skies. The killer drones can also carry LED li

The innovative shield that protects OSIRIS-APEX can also protect the new hypersonic aircraft.

"NASA’s OSIRIS-APEX spacecraft successfully completed its closest solar pass, protected by innovative engineering solutions and showing improvements in onboard instruments. Credit: NASA’s Goddard Space Flight Center/CI Lab" (ScitechDaily, Innovative Engineering Shields NASA’s OSIRIS-APEX During Close Encounter With the Sun) The OSIRIS-APEX probe travels close to the sun. The mission plan is to research the sun. And especially find things that can warn about solar storms. Solar storms are things that can danger satellites at the Earth orbiter. And the purpose of OSIRIS-APEX is to find the method of how to predict those solar storms. Another thing is that the OSIRIS-APEX tests the systems and materials that protect this probe against heat and plasma impacts.  The same technology. The researchers created for OSIRIS-APEX can used in the materials and structures. That protects satellites against nuclear explosions. That means this kind of system delivers information on how to prot