Skip to main content

The bulletproof clothes might be true somewhere in the distant future.

(Picture 1)


Kimmo Huosionmaa

The graphene might be very advanced material alone, but connecting those graphite layers together with another material gives graphene more advanced affection. I'm writing here about the material, what consists graphene with two layers, and in the middle of those layers could be the titanium structure, what works like spring.


Material works like that the outer structure will take the punch, and between those layers is so-called nano-springs, what will suck the power of the punch, before it will conduct to the downed layer of the graphene. That might give the graphene even more capacity, than what it has now. When we are talking about graphene as the material of the bulletproof vests and clothes, we must create some kind of different material that graphene.

2D graphite network would give awesome capacities for the solid surfaces, and if the graphene can put in some particular profile, that can be used as the cover the surfaces of the fighter like F-16. The double surface nano-spring graphene could give more heat and punch tolerance for those aircraft and of course, that material can be used at any surface in the world. When the bulletproof material is in the multi-layer structure, it will be more effective stopper than single layer material.


If there will be little room, what separates the surfaces that will five very good isolation against heat. This kind of information is taken by the spacecraft, what needs protection against micrometeorites. But when we would want to make the bulletproof clothes, we might want to have the material, what feels soft like normal canvas, but could stop the bullets. That kind of material seems very difficult to make, but it might be possible.

(Picture 2)


A surface of the canvas-structure would be covered with nano-technical springs and little plates of fullerene, and that could give the clothes, what feels normal the capacity to stop the bullet. The thing would go that the short but the powerful punch would make those springs to kick back against the punch.

Nano-springs need special shape, and that's why those things are quite expensive and complicated to build. In that nanomachine is installed little lever, what will pull the spring upwards. The production of the nanomachines would happen with some genetically manipulated cells, what can produce the right molecules, what would be put in the places with the ion-cannons or by the viruses, what has wires, that could transfer by electric fields.


Those viruses seem like some kind of the moon module, and their "feet" would help them to the position in the right point of the ion-pump, what will suck the DNA in the cell, and the cores of those viruses could be used as the nanorobots, what will assembly the complicated nano-machines. In the world of nanomachines could the little electric motors made by cutting the motors of the bacteria away from the cells, and then there will put the very thin kevlar fiber with small iron bites, what can use for moving the nano-submarines.


The problem of complicated nano-structures is that the instruments, what is needed in those processes are very small. That's why the controlling of those things is so difficult. And the production of complicated structures is very difficult, and those things must produce billions.  But if those complicated nano-springs can someday product with mass production, there could be possible to make the clothes, what are covered by those things.

Picture 1

https://www.theneweconomy.com/wp-content/uploads/2014/03/Graphene.jpg


Picture 2
https://d1o50x50snmhul.cloudfront.net/wp-content/uploads/2014/07/dn25954

Comments

Popular posts from this blog

MIT's tractor beam can make the new types of SASER systems possible

   "This chip-based "tractor-beam," which uses an intensely focused beam of light to capture and manipulate biological particles without damaging the cells, could help biologists study the mechanisms of diseases."(Interesting Engineering, MIT’s Star Wars-inspired ‘tractor beam’ uses light to capture, manipulate cells) MIT's tractor beam can make the new types of SASER systems possible. The tractor beam just hovers the nanoparticle in air or medium, and then the laser or some other electromagnetic system transports oscillation into those particles. The ability to make cells and other particles hover in the system makes it possible to create particles whose energy level or resonance frequencies are accurately calculated things.  That thing makes it possible to create things that transmit wave movement accurately and cleanly. This is one version of the use of a tractor beam. Modern tractor beams are like acoustic tweezers where sound waves lock the object in its cr

The new observations tell that the thunderstorms form gamma-rays. That could make gamma-ray lasers possible.

  "An illustration of NASA’s research plane ER-2 flying over thunderstorms. Credit: University of Bergen / Mount Visual (CC BY 4.0), edited" (ScitechDaily, Surprising Discovery: NASA’s Retrofitted U2 Spy Plane Reveals Tropical Lightning Storms Are Radioactive) The new observations tell that the thunderstorms form gamma-rays. That could make gamma-ray lasers possible. The process has been observed by the NASA (Lockheed) ER-2 research plane, which is a modified U-2 spy plane. The gamma-ray formation in thunderstorms. Where lightning and electric fields release electrons that impact the air molecules and water droplets is an interesting thing. That thing opens the route to solving many mysteries.  "The general physics behind how thunderstorms create high-energy flashes of gamma radiation is not a mystery. As thunderstorms develop, swirling drafts drive water droplets, hail, and ice into a mixture that creates an electric charge much like rubbing a balloon on your shirt. Pos

Chinese innovations and space lasers are interesting combinations.

Above: "Tiangong is China's operational space station located in low Earth orbit. (Image credit: Alejomiranda via Getty Images)" (Scpace.com, China's space station, Tiangong: A complete guide) Chinese are close to making nuclear-powered spacecraft.  Almost every day, we can read about Chinese technical advances. So are, the Chinese more innovative than Western people? Or is there some kind of difference in culture and morale between Western and Chinese societies? The Chinese superiority in hypersonic technology is one of the things that tells something about the Chinese way of making things.  In China, the mission means. And the only thing that means is mission. That means that things like budgets and safety orders are far different from Western standards. If some project serves the Chinese communist party and PLA (People's Liberation Army) that guarantees unlimited resources for those projects. Chinese authorities must not care about the public opinion.  If we th