Skip to main content

The next-generation camouflage mimics cephalopods’ color-changing ability.

There are two ways to make the camouflage that makes objects chameleons. The first one is the active system. There are cameras on the opposite side of the object, and then the system transmits the image to the opposite side of the protected system. The purpose of that thing is to make the system hollow. 

The problem with active camouflage is that objects must merge with the background, not with things that are in front of them. AI, along with nanotechnology, makes it possible to create large, very accurately controlled structures. And that thing makes it possible to create nanoballs, which are crystals that have different colors on each side. Then the computer simply turns the right side of that crystal in the desired direction.


Novel ink composed of colorful microbeads adapts to the appearance of received light by light-driven separation. Credit: The University of Hong Kong (ScitechDaily.com/The Future of Camouflage: Mimicking Cephalopods’ Color-Changing Ability).

The next-generation camouflage bases are extremely small nano swimmers. The nano swimmer is in a small ball, and the radiation changes direction. But if the cube-form crystal is a dry nanoball hanging in the nano-size axles, that allows the system to control that thing better. In ideal systems, each of those nanoballs has its individual nano-size microprocessor that controls every part of the system separately. The ability to control the crystal and adjust the side that it turns toward the observer can be used in the next-generation screens.

The idea is that the nanotechnology behind this chameleon structure is changing the color of the active color pigment as light impacts it. Theoretically, color-changing active paint pigments are quite easy to make using nanotechnology.

Nanotechnology requires electricity. And there are many possibilities for making electricity for the nanosystems that are controlling the camouflage. One version is that one side of the nanocube is the solar panel. When the system's power is low, it turns the photovoltaic side outside. And that makes the same system able to load batteries. There could be nano-size generators in the suit, and of course, the user can use batteries that are on the belt. The computing system can be found in the multiple microprocessors around the canvas where those nanostructures are.

There is a sphere, and in the structure, there are three colors that make up the colors in the color TV. Then there must be something that turns the right side of the color-changing structure in the direction where radiation comes from. That system can be connected to nano-LEDs that are used to determine the color of the camouflage. And that new Chinese invention can be used to give a matte finish to LED-based systems.

Those rotating crystals are one possibility. How to make a passive system that copies images from around it. There is a possibility that this Chinese camouflage requires some kind of LED light so that it can create the background image of the object. Those chameleon systems are always interesting. And AI and small computers, along with new power sources, are making those kinds of systems more powerful than ever before.

https://scitechdaily.com/the-future-of-camouflage-mimicking-cephalopods-color-changing-ability/?expand_article=1

Comments

Popular posts from this blog

MIT's tractor beam can make the new types of SASER systems possible

   "This chip-based "tractor-beam," which uses an intensely focused beam of light to capture and manipulate biological particles without damaging the cells, could help biologists study the mechanisms of diseases."(Interesting Engineering, MIT’s Star Wars-inspired ‘tractor beam’ uses light to capture, manipulate cells) MIT's tractor beam can make the new types of SASER systems possible. The tractor beam just hovers the nanoparticle in air or medium, and then the laser or some other electromagnetic system transports oscillation into those particles. The ability to make cells and other particles hover in the system makes it possible to create particles whose energy level or resonance frequencies are accurately calculated things.  That thing makes it possible to create things that transmit wave movement accurately and cleanly. This is one version of the use of a tractor beam. Modern tractor beams are like acoustic tweezers where sound waves lock the object in its cr

The new observations tell that the thunderstorms form gamma-rays. That could make gamma-ray lasers possible.

  "An illustration of NASA’s research plane ER-2 flying over thunderstorms. Credit: University of Bergen / Mount Visual (CC BY 4.0), edited" (ScitechDaily, Surprising Discovery: NASA’s Retrofitted U2 Spy Plane Reveals Tropical Lightning Storms Are Radioactive) The new observations tell that the thunderstorms form gamma-rays. That could make gamma-ray lasers possible. The process has been observed by the NASA (Lockheed) ER-2 research plane, which is a modified U-2 spy plane. The gamma-ray formation in thunderstorms. Where lightning and electric fields release electrons that impact the air molecules and water droplets is an interesting thing. That thing opens the route to solving many mysteries.  "The general physics behind how thunderstorms create high-energy flashes of gamma radiation is not a mystery. As thunderstorms develop, swirling drafts drive water droplets, hail, and ice into a mixture that creates an electric charge much like rubbing a balloon on your shirt. Pos

Chinese innovations and space lasers are interesting combinations.

Above: "Tiangong is China's operational space station located in low Earth orbit. (Image credit: Alejomiranda via Getty Images)" (Scpace.com, China's space station, Tiangong: A complete guide) Chinese are close to making nuclear-powered spacecraft.  Almost every day, we can read about Chinese technical advances. So are, the Chinese more innovative than Western people? Or is there some kind of difference in culture and morale between Western and Chinese societies? The Chinese superiority in hypersonic technology is one of the things that tells something about the Chinese way of making things.  In China, the mission means. And the only thing that means is mission. That means that things like budgets and safety orders are far different from Western standards. If some project serves the Chinese communist party and PLA (People's Liberation Army) that guarantees unlimited resources for those projects. Chinese authorities must not care about the public opinion.  If we th