Skip to main content

A shattering breakeven barrier allows quantum error correction.

Before we can make quantum computers that are the same way trusted as binary computers we must make a system that corrects errors. Error-correcting requires that error can detect. The thing that the system must follow is the break-even, or breakeven barrier while it makes corrections. A breakeven barrier is a mathematical formula. Where the number of positive cases should cross the number of negative cases breaking that barrier means that the system makes a positive solution more than negative solutions. 

When quantum systems are making calculations. Their weakness is that only another quantum system can detect errors in quantum computer-made calculations. In some models, the system sends the calculation twice through those systems. The system compares those answers The problem is that the calculation error could be in the last pulse. 


"A logical qubit is embedded into the state space of a harmonic oscillator using the grid code, represented here by faces of the cube. Quantum error correction protects these grid states from corruption by a noisy environment, symbolized by the ray. Credit: Image courtesy of Polina Shmatkova" (ScitechDaily.com/Quantum Error Correction: Shattering the Breakeven Barrier)

If there are differences between those answers. The system must start to search for the error. The reason for errors can be FRB or GRB which shakes the qubits. Before error correction is possible the system must know that there are no broken things inside its internal structure. 

A shattering breakeven barrier means correcting the circuit or system makes more corrections than causing errors itself. There is the possibility that when the system makes corrections over the system border, that system makes more damage than corrects errors. Error detection requires that the system has a matrix. 

The correcting system uses that matrix to compare with other systems. And that is the problem. There are multiple points where the system can make errors. When the system stores data in the backup files. 



Image: A breakeven (break-even) point in economics is the case. Where profits turn higher than costs. 


There is the possibility that some outside, non-controlled effect can affect the storing process, data storage, or the process that reads the matrix data. Another thing is that the error is not necessarily in the matrix data. 

Comparing systems over the border means that the correcting system must drive information over the border, which changes energy levels in those systems. The order of the participants is an extremely important thing in quantum computing. And one part of that order is the energy level. 

If something changes in orders or energy levels the quantum system cannot make its missions. In many models, the quantum systems use two quantum lines for error detection. The problem with that kind of model is that the system must wait until both sides complete their missions. 

In the cases that quantum computers make missions that remain hours or days, that thing means that if there are differences in answers the quantum system must start the entire process again. So for making the quantum system more powerful, the system requires intermediate recordings so that the controlling system can see if something goes wrong. 


https://scitechdaily.com/quantum-error-correction-outpacing-decoherence-shattering-the-breakeven-barrier/?expand_article=1


https://en.wikipedia.org/wiki/Break-even


https://en.wikipedia.org/wiki/Break-even_%28economics%29

Comments

Popular posts from this blog

Chinese innovations and space lasers are interesting combinations.

Above: "Tiangong is China's operational space station located in low Earth orbit. (Image credit: Alejomiranda via Getty Images)" (Scpace.com, China's space station, Tiangong: A complete guide) Chinese are close to making nuclear-powered spacecraft.  Almost every day, we can read about Chinese technical advances. So are, the Chinese more innovative than Western people? Or is there some kind of difference in culture and morale between Western and Chinese societies? The Chinese superiority in hypersonic technology is one of the things that tells something about the Chinese way of making things.  In China, the mission means. And the only thing that means is mission. That means that things like budgets and safety orders are far different from Western standards. If some project serves the Chinese communist party and PLA (People's Liberation Army) that guarantees unlimited resources for those projects. Chinese authorities must not care about the public opinion.  If we th

Iron Dome is one of the most effective air defense systems.

The Iron Dome is a missile defense system whose missiles operate with highly sophisticated and effective artificial intelligence. The power of this missile defense base is in selective fire. The system calculates the incoming missile's trajectory. And it shoots only missiles that will hit the inhabited area. The system saves missiles and focuses defense on areas that mean something. The system shares the incoming missiles in, maybe two groups. Another is harmless and another is harmful.  Things like killer drones are also problematic because their trajectories are harder to calculate than ballistic missiles. The thing that makes drones dangerous is that they can make masks for ballistic missiles. And even if those drones are slow, all of them must be shot down.  The thing is that the cooperation between drone swarms and ballistic missiles is the next danger in conflict areas. In the film, you can see how drones make light images of the skies. The killer drones can also carry LED li

The innovative shield that protects OSIRIS-APEX can also protect the new hypersonic aircraft.

"NASA’s OSIRIS-APEX spacecraft successfully completed its closest solar pass, protected by innovative engineering solutions and showing improvements in onboard instruments. Credit: NASA’s Goddard Space Flight Center/CI Lab" (ScitechDaily, Innovative Engineering Shields NASA’s OSIRIS-APEX During Close Encounter With the Sun) The OSIRIS-APEX probe travels close to the sun. The mission plan is to research the sun. And especially find things that can warn about solar storms. Solar storms are things that can danger satellites at the Earth orbiter. And the purpose of OSIRIS-APEX is to find the method of how to predict those solar storms. Another thing is that the OSIRIS-APEX tests the systems and materials that protect this probe against heat and plasma impacts.  The same technology. The researchers created for OSIRIS-APEX can used in the materials and structures. That protects satellites against nuclear explosions. That means this kind of system delivers information on how to prot