Skip to main content

Superheavy, artificial elements can use for gamma- or X-ray stroboscopes. Or in extremely powerful nuclear reactors.

 

Superheavy, artificial elements can use for gamma- or X-ray stroboscopes. Or in extremely powerful nuclear reactors. 



There are many hypothetical places where synthetic elements can use. But the thing that limits their use is the short half-life. That thing means that those extremely heavy radioactive elements can store in particle accelerators or electromagnetic radiation. Which pushes those atoms to one piece will deny their splitting or natural fission of those atoms. 

But it all started when Technetium was first time produced in 1937 by Emilio Segrè (1905-1989) and Carlo Perrier (1886-1948). The first synthetic element in the world is Technetium. That element shows that there is possible to create synthetic elements. Like Dmitri Mendeev (1834-1907) predicted in 1871. Technetium is used as a gamma-ray source and for radioactive medical work.

The use of super-heavy elements is a very limited thing. The super heavy or synthetic elements are extremely short-living. Most of them are coming after Uranium except Technetium element number 43. Technetium is the first of synthetic elements in the world. Technetium is used in some sensors. As the radiation source. 

There is a long list of use of that synthetic radioactive element. The fact is Technetium is found in nature. It's the product of the natural fission of Uranium 238, or it's also in the giant stars. 

Plutonium is used in nuclear weapons. But it could also use in small and powerful nuclear reactors. There are small numbers of Plutonium in nature. But most of it is synthetically produced. 

All elements, which are heavier than Uranium are synthetic. Or are found in very small numbers in places like deep minings or heavy stars. Artificial radioactive elements and isotopes are made from other elements. By using neutron or ion bombardment. The researchers require a particle accelerator for creating the heaviest particles in the world. 

In those systems, the particle accelerator drives ionized elements together. And the heavy particle fusion creates new elements. Sometimes people are asked why Uranium 235 turns to heavier element Plutonium 239 during fission? 

The fact is that the element that turns to Plutonium 239 is Uranium 238 which catches one neutron during nuclear fission. So the Uranium 235 is impacting with neutrons the product of the fission are  Iodine-131, Cesium-137, and Strontium-90. The bombardment of Uranium 238 creates Plutonium 239. 

The super-heavy elements, like Oganesson, is the heaviest known element. It is predicted to be a noble gas. And the last in the periodic table of elements with the number 118 has half-time 0,69 ms. The thing is that this kind of very short-living radioactive element has one use. Those kinds of elements can use in X- or gamma-ray stroboscopes. 

Then that kind of element has an extremely short half-time is released to the front of the sensor it will send short-periodic gamma- or x-ray bursts. And those flashes can be used as gamma- or X-ray sources in stroboscopes that are detecting extremely short-period reactions. 

A thing that makes those particles so unstable is their extremely big atom weight. The oscillation in the nuclei of the atoms is so strong that the electron cores cannot keep protons and neutrons together. And that causes the effect where atoms are splitting. 

Sometimes is introduced an idea that increasing the electrons around the nuclei of those super heavy particles is making those particles more stable. Or in some other ideas, the powerful laser or other electromagnetic fields are used to push those Moscovium and Oganesson atoms and that pressure can stabilize them. 


Moscovium and "anti-gravity".



In that case, element 115 or Moscovium is used in the systems that can levitate over the ground. The system would use super-heavy elements for creating antimatter. But the thing is that those systems would be only theoretical use of those elements. 

The thing is that elements like Oganesson and Moscovium which is element 115, can be used in extremely small-size nuclear reactors. The system would use the particle accelerator for causing the time dilation which stores those elements for storing them. 

There are many stories about the use of especially element 115 in "anti-gravity" The fact is that the short half-time will make the use of those elements as a fuel in a nuclear reactor. But if the stabilization can be made those elements could give a very high power for the air- and spacecraft. 

The thing is that the element 115 can simply spray into the air. And then that short-living element can create the radiation that pushes the craft forward. When the element 115 will spray under the craft.  

There could be an antimatter collector. In that system, the beta-radiation will impact the gold leaf. And then that thing would turn at least part of those particles into antimatter. This kind of system would be very capable of orbital flights.  But also extremely difficult to make because of the short-half time of the used elements. So making that system is not impossible. But storing and producing that element is difficult. 



https://www.env.go.jp/en/chemi/rhm/basic-info/1st/02-02-03.html


https://science.howstuffworks.com/space/aliens-ufos/element-115.htm


https://ui.adsabs.harvard.edu/abs/2004AIPC..699.1230A/abstract


https://en.wikipedia.org/wiki/Dmitri_Mendeleev


https://en.wikipedia.org/wiki/Emilio_Segr%C3%A8


https://en.wikipedia.org/wiki/Moscovium


https://en.wikipedia.org/wiki/Oganesson


https://en.wikipedia.org/wiki/Plutonium


https://en.wikipedia.org/wiki/Technetium


https://en.wikipedia.org/wiki/Uranium


https://thoughtsaboutsuperpositions.blogspot.com/

Comments

Popular posts from this blog

Chinese innovations and space lasers are interesting combinations.

Above: "Tiangong is China's operational space station located in low Earth orbit. (Image credit: Alejomiranda via Getty Images)" (Scpace.com, China's space station, Tiangong: A complete guide) Chinese are close to making nuclear-powered spacecraft.  Almost every day, we can read about Chinese technical advances. So are, the Chinese more innovative than Western people? Or is there some kind of difference in culture and morale between Western and Chinese societies? The Chinese superiority in hypersonic technology is one of the things that tells something about the Chinese way of making things.  In China, the mission means. And the only thing that means is mission. That means that things like budgets and safety orders are far different from Western standards. If some project serves the Chinese communist party and PLA (People's Liberation Army) that guarantees unlimited resources for those projects. Chinese authorities must not care about the public opinion.  If we th

Iron Dome is one of the most effective air defense systems.

The Iron Dome is a missile defense system whose missiles operate with highly sophisticated and effective artificial intelligence. The power of this missile defense base is in selective fire. The system calculates the incoming missile's trajectory. And it shoots only missiles that will hit the inhabited area. The system saves missiles and focuses defense on areas that mean something. The system shares the incoming missiles in, maybe two groups. Another is harmless and another is harmful.  Things like killer drones are also problematic because their trajectories are harder to calculate than ballistic missiles. The thing that makes drones dangerous is that they can make masks for ballistic missiles. And even if those drones are slow, all of them must be shot down.  The thing is that the cooperation between drone swarms and ballistic missiles is the next danger in conflict areas. In the film, you can see how drones make light images of the skies. The killer drones can also carry LED li

The innovative shield that protects OSIRIS-APEX can also protect the new hypersonic aircraft.

"NASA’s OSIRIS-APEX spacecraft successfully completed its closest solar pass, protected by innovative engineering solutions and showing improvements in onboard instruments. Credit: NASA’s Goddard Space Flight Center/CI Lab" (ScitechDaily, Innovative Engineering Shields NASA’s OSIRIS-APEX During Close Encounter With the Sun) The OSIRIS-APEX probe travels close to the sun. The mission plan is to research the sun. And especially find things that can warn about solar storms. Solar storms are things that can danger satellites at the Earth orbiter. And the purpose of OSIRIS-APEX is to find the method of how to predict those solar storms. Another thing is that the OSIRIS-APEX tests the systems and materials that protect this probe against heat and plasma impacts.  The same technology. The researchers created for OSIRIS-APEX can used in the materials and structures. That protects satellites against nuclear explosions. That means this kind of system delivers information on how to prot