Skip to main content

Quantum mechanics and artificial intelligence are used to model high-temperature chemical reactions.

 Quantum mechanics and artificial intelligence are used to model high-temperature chemical reactions. 



"Schematic of the bridging of the cold quantum world. And high-temperature metal extraction with machine learning". Credit: Rodrigo Ortiz de la Morena and Jose A. Garrido Torres/Columbia Engineering(SciTechDaily)


The chemical reactions are similar to the reactions in the quantum world. But the scale of those reactions is larger. And artificial intelligence can use to model reactions between high-temperature and low-temperature objects. Also, artificial intelligence can use to model how the reactions in the quantum world affect molecules? 

There are certain rules on how chemical bonds form or how they cut. When we are thinking about chemical bonds. They are like small-size feet or hands. That are connecting atoms. In the world of chemicals, everything has some kind of effect on the reaction. When the energy level of the components of the chemical reactions is chanced. 

That thing causes changes in the speed of reaction. By stressing chemicals with high accurate energy bursts like laser rays are possible to warm the molecules precisely to the right temperature. Also, the things like cooling other participate and warming others make it possible to adjust the dominating part of the reaction. 

There is possible to spray electrons or protons between molecules. And that is making it possible to adjust their ability to touch each other. If there is iron or some other magnetic chemical in the chemical compound. That thing means that magnetic fields affect those chemicals. 

The laser rays can be used to move single molecules and connect them to macro-molecules like fullerene chains. In those chains maybe 100 C-60 fullerene molecules are put to chains. And that thing forms the C-6000 molecule. The laser ray and ultrasound tweezers can use to put the single fullerene molecule to an extremely complicated structure. 


The fullerene molecule is acting the same way as a single carbon atom. And that thing makes it possible to connect them to similar but larger structures with single carbon atoms. So there is the possibility to make the carbon molecule structures there are thousands or even millions of carbon atoms. 

And basically, the chemical reactions are forming or cutting the bonds. And reconnect those bonds with other atoms. So the machine learning can collect data about the chemical and physical environment where some chemical reactions are created. And then those conditions can multiply with other reaction chambers. The thing is that many elements are affecting chemical reactions. 

Of course, catalyzation or inhibiting reactions. By using some other chemicals are an important thing. Things like protective gases like noble-gas layers. Or extremely high accurately calculated gas mixtures. Are things that make it possible to create a new types of chemical compounds, like complicated carbon structures that are needed for nanomachines. 

But also the physical conditions like radiation affect chemical reactions. The ionization, thermal or ionizing radiation have effects on chemical reactions. As well as things like does the reaction chamber moving which means that is connected to centrifuges. Or does the reaction happen in micro gravitation? Also, things like sunlight and magnetic fields affect chemical reactions. 


https://scitechdaily.com/quantum-mechanics-and-machine-learning-used-to-accurately-predict-chemical-reactions-at-high-temperatures/


Image: https://scitechdaily.com/quantum-mechanics-and-machine-learning-used-to-accurately-predict-chemical-reactions-at-high-temperatures/

Comments

Popular posts from this blog

Chinese innovations and space lasers are interesting combinations.

Above: "Tiangong is China's operational space station located in low Earth orbit. (Image credit: Alejomiranda via Getty Images)" (Scpace.com, China's space station, Tiangong: A complete guide) Chinese are close to making nuclear-powered spacecraft.  Almost every day, we can read about Chinese technical advances. So are, the Chinese more innovative than Western people? Or is there some kind of difference in culture and morale between Western and Chinese societies? The Chinese superiority in hypersonic technology is one of the things that tells something about the Chinese way of making things.  In China, the mission means. And the only thing that means is mission. That means that things like budgets and safety orders are far different from Western standards. If some project serves the Chinese communist party and PLA (People's Liberation Army) that guarantees unlimited resources for those projects. Chinese authorities must not care about the public opinion.  If we th

Iron Dome is one of the most effective air defense systems.

The Iron Dome is a missile defense system whose missiles operate with highly sophisticated and effective artificial intelligence. The power of this missile defense base is in selective fire. The system calculates the incoming missile's trajectory. And it shoots only missiles that will hit the inhabited area. The system saves missiles and focuses defense on areas that mean something. The system shares the incoming missiles in, maybe two groups. Another is harmless and another is harmful.  Things like killer drones are also problematic because their trajectories are harder to calculate than ballistic missiles. The thing that makes drones dangerous is that they can make masks for ballistic missiles. And even if those drones are slow, all of them must be shot down.  The thing is that the cooperation between drone swarms and ballistic missiles is the next danger in conflict areas. In the film, you can see how drones make light images of the skies. The killer drones can also carry LED li

The innovative shield that protects OSIRIS-APEX can also protect the new hypersonic aircraft.

"NASA’s OSIRIS-APEX spacecraft successfully completed its closest solar pass, protected by innovative engineering solutions and showing improvements in onboard instruments. Credit: NASA’s Goddard Space Flight Center/CI Lab" (ScitechDaily, Innovative Engineering Shields NASA’s OSIRIS-APEX During Close Encounter With the Sun) The OSIRIS-APEX probe travels close to the sun. The mission plan is to research the sun. And especially find things that can warn about solar storms. Solar storms are things that can danger satellites at the Earth orbiter. And the purpose of OSIRIS-APEX is to find the method of how to predict those solar storms. Another thing is that the OSIRIS-APEX tests the systems and materials that protect this probe against heat and plasma impacts.  The same technology. The researchers created for OSIRIS-APEX can used in the materials and structures. That protects satellites against nuclear explosions. That means this kind of system delivers information on how to prot