Skip to main content

The 2D materials give the possibility to create new lightweight and stronger-than-diamond materials.

 The 2D materials give the possibility to create new lightweight and stronger-than-diamond materials.

 

The 2D materials are the next-generation products. That allows researchers to create strong and lightweight structures. The problem with 2D materials like graphene is that they lose their abilities if they cannot keep their 2D structures.

Another problem is how to produce a large mass of graphene. Graphene itself is a material that makes it possible to create materials stronger than diamond. 

Researchers can use graphene as boxes, which walls are created by using graphene. The fullerene nanotubes can form the frame inside the graphene box. Or the graphene boxes can connect by using those nanotubes.  When graphene is connected with another carbon's allotropic form called ANDR (Aggregated diamond nanorod) that thing can create a structure that resists vertical strikes better than diamonds. 




The ANDR nanorods can be put as frames in those graphene boxes to give extra strength to those materials. Manufacturing systems can install those graphene boxes on a layer using DNA bites. They act as nano springs whose mission is to remove impact energy. 

The problem is how to produce enough of those nanorods and graphene. There is also the possibility to cover the graphene layer by using nanodiamonds. Those nanodiamonds form pyramid-shaped structures over graphene. Those nanodiamonds are the tools that can used in the next-generation stealth materials. 

Those graphene boxes are giving a new type of extremely hard layer for any shell. That kind of layer is useful in the spacecraft. But it could be game-changing armor in many military tools. 

The new materials require new production methods.  Production and handling of those new materials require AI-controlled chemical and physical environments. 

Structures that can be stronger than diamonds  Are useful for tools that must bite extremely strong materials. 

Graphene production is a very easy process. The system must only cover some layers by using graphite. Then the laser just planes extra carbon layers away from that material. The lasers or other electromagnetic systems can press regular cylinder-shaped nanotubes together. That kind of technology can turn regular nanotubes into ANDR nanorods. The thing is that nanomaterials are coming. 


https://scitechdaily.com/quantum-breakthrough-scientists-develop-new-way-to-manipulate-exotic-materials/


https://en.wikipedia.org/wiki/Aggregated_diamond_nanorod


https://en.wikipedia.org/wiki/Carbon_nanotube


Comments

Popular posts from this blog

MIT's tractor beam can make the new types of SASER systems possible

   "This chip-based "tractor-beam," which uses an intensely focused beam of light to capture and manipulate biological particles without damaging the cells, could help biologists study the mechanisms of diseases."(Interesting Engineering, MIT’s Star Wars-inspired ‘tractor beam’ uses light to capture, manipulate cells) MIT's tractor beam can make the new types of SASER systems possible. The tractor beam just hovers the nanoparticle in air or medium, and then the laser or some other electromagnetic system transports oscillation into those particles. The ability to make cells and other particles hover in the system makes it possible to create particles whose energy level or resonance frequencies are accurately calculated things.  That thing makes it possible to create things that transmit wave movement accurately and cleanly. This is one version of the use of a tractor beam. Modern tractor beams are like acoustic tweezers where sound waves lock the object in its cr

The new observations tell that the thunderstorms form gamma-rays. That could make gamma-ray lasers possible.

  "An illustration of NASA’s research plane ER-2 flying over thunderstorms. Credit: University of Bergen / Mount Visual (CC BY 4.0), edited" (ScitechDaily, Surprising Discovery: NASA’s Retrofitted U2 Spy Plane Reveals Tropical Lightning Storms Are Radioactive) The new observations tell that the thunderstorms form gamma-rays. That could make gamma-ray lasers possible. The process has been observed by the NASA (Lockheed) ER-2 research plane, which is a modified U-2 spy plane. The gamma-ray formation in thunderstorms. Where lightning and electric fields release electrons that impact the air molecules and water droplets is an interesting thing. That thing opens the route to solving many mysteries.  "The general physics behind how thunderstorms create high-energy flashes of gamma radiation is not a mystery. As thunderstorms develop, swirling drafts drive water droplets, hail, and ice into a mixture that creates an electric charge much like rubbing a balloon on your shirt. Pos

Chinese innovations and space lasers are interesting combinations.

Above: "Tiangong is China's operational space station located in low Earth orbit. (Image credit: Alejomiranda via Getty Images)" (Scpace.com, China's space station, Tiangong: A complete guide) Chinese are close to making nuclear-powered spacecraft.  Almost every day, we can read about Chinese technical advances. So are, the Chinese more innovative than Western people? Or is there some kind of difference in culture and morale between Western and Chinese societies? The Chinese superiority in hypersonic technology is one of the things that tells something about the Chinese way of making things.  In China, the mission means. And the only thing that means is mission. That means that things like budgets and safety orders are far different from Western standards. If some project serves the Chinese communist party and PLA (People's Liberation Army) that guarantees unlimited resources for those projects. Chinese authorities must not care about the public opinion.  If we th