Skip to main content

Micro LEDs and neutrinos are new tools for next-generation optical computing.

   Micro LEDs and neutrinos are new tools for next-generation optical computing. 


Optical computing is one of the most promising tools for creating new and powerful computers. Similar theories that researchers made for regular computers can be used in optical computers. The problem is how to transform photons into electric information. In some models, information travels between switches and photon transistors and gates in photon form. 

At the point where information travels to a switch or router a photovoltaic cell turns it into the electric form. And the other side the miniature LED turns it back into the photonic form. Or the router can replaced by using miniature mirrors. That increases the photonic volume in the data processing. 

"Researchers have highlighted the potential of on-chip nanophotonic systems as a solution to the challenges presented by traditional electrical networks. These systems utilize light for data transmission, offering increased bandwidth and speed". (ScitechDaily.com/Quantum Well Nanowire Array Micro-LEDs: The Future of On-chip Optical Communication)


The optical computer is light and in the binary version when light is on, the value in the system is one. And when light is off the value is zero. The problem is how to blink light fast enough. 


The answer for that could be nano-LEDs or a system that looks like a camera shutter. When the shutter lets the light go to the photovoltaic cell the value is one. And when the shutter is shut, the value is zero. That allows to make the optical or half-optical computer by using regular lights.

If the system uses two routes for transmitting data is possible to make even faster computers. The system requires AI-based control, but in a binary system values one and zero have different routes. So route one gives value one. And route two gives a value of zero. Or opposite. The speed of shutters determines the speed of the computer. 

Making the optical computer by using two lights that send their light to photovoltaic cells is possible. Cell number one gives a value of zero. Cell number one gives value one. There should be fast-moving shutters like in cameras between those photovoltaic cells and the light source. 

The nano LEDs can be the tools that can also make the optical computers fast. The system can control those nano LEDs with very high accuracy. Computers can use Those LEDs in extremely small nano-lasers. Those nano-lasers could give very high-accurate light impulses to systems that turn the binary data into quantum mode. 



"New research has discovered new interactions between neutrinos and photons, potentially shedding light on mysteries in particle physics and solar phenomena". (ScitechDaily.com/Neutrino-Photon Interactions: Unlocking the Mysteries of Particle Physics)



The neutrino is the almost perfect qubit. But the problem is: how to get neutrinos? 


The photon-neutrino interaction is the next-generation thing, that could use in quantum computers. Neutrino is a very weakly interacting particle, that interacts with photons. In some visions, the photons can be used to load information into neutrinos. 

The system uses single photons where information is loaded, and those photons will turn those neutrinos into qubits that can transport information over long distances. And then the neutrino detector will remove that data from neutrinos. The idea about neutrino qubits is based on the model that neutrino can have superposition like all other elementary particles.  

The problem with neutrinos is that they are hard to get. In some visions, the photons are used to stop the neutrino and then the information will load into it. Then some kind of EM radiation transfers that neutrino into the wanted direction. Then photon impacts or neutrino detectors can be used to download information from neutrino.


https://www.sciencealert.com/neutrinos-ghost-particles-can-interact-with-light-after-all


https://scitechdaily.com/neutrino-photon-interactions-unlocking-the-mysteries-of-particle-physics/


https://scitechdaily.com/quantum-well-nanowire-array-micro-leds-the-future-of-on-chip-optical-communication/


Comments

Popular posts from this blog

Chinese innovations and space lasers are interesting combinations.

Above: "Tiangong is China's operational space station located in low Earth orbit. (Image credit: Alejomiranda via Getty Images)" (Scpace.com, China's space station, Tiangong: A complete guide) Chinese are close to making nuclear-powered spacecraft.  Almost every day, we can read about Chinese technical advances. So are, the Chinese more innovative than Western people? Or is there some kind of difference in culture and morale between Western and Chinese societies? The Chinese superiority in hypersonic technology is one of the things that tells something about the Chinese way of making things.  In China, the mission means. And the only thing that means is mission. That means that things like budgets and safety orders are far different from Western standards. If some project serves the Chinese communist party and PLA (People's Liberation Army) that guarantees unlimited resources for those projects. Chinese authorities must not care about the public opinion.  If we th

Iron Dome is one of the most effective air defense systems.

The Iron Dome is a missile defense system whose missiles operate with highly sophisticated and effective artificial intelligence. The power of this missile defense base is in selective fire. The system calculates the incoming missile's trajectory. And it shoots only missiles that will hit the inhabited area. The system saves missiles and focuses defense on areas that mean something. The system shares the incoming missiles in, maybe two groups. Another is harmless and another is harmful.  Things like killer drones are also problematic because their trajectories are harder to calculate than ballistic missiles. The thing that makes drones dangerous is that they can make masks for ballistic missiles. And even if those drones are slow, all of them must be shot down.  The thing is that the cooperation between drone swarms and ballistic missiles is the next danger in conflict areas. In the film, you can see how drones make light images of the skies. The killer drones can also carry LED li

The innovative shield that protects OSIRIS-APEX can also protect the new hypersonic aircraft.

"NASA’s OSIRIS-APEX spacecraft successfully completed its closest solar pass, protected by innovative engineering solutions and showing improvements in onboard instruments. Credit: NASA’s Goddard Space Flight Center/CI Lab" (ScitechDaily, Innovative Engineering Shields NASA’s OSIRIS-APEX During Close Encounter With the Sun) The OSIRIS-APEX probe travels close to the sun. The mission plan is to research the sun. And especially find things that can warn about solar storms. Solar storms are things that can danger satellites at the Earth orbiter. And the purpose of OSIRIS-APEX is to find the method of how to predict those solar storms. Another thing is that the OSIRIS-APEX tests the systems and materials that protect this probe against heat and plasma impacts.  The same technology. The researchers created for OSIRIS-APEX can used in the materials and structures. That protects satellites against nuclear explosions. That means this kind of system delivers information on how to prot