Skip to main content

Micro LEDs and neutrinos are new tools for next-generation optical computing.

   Micro LEDs and neutrinos are new tools for next-generation optical computing. 


Optical computing is one of the most promising tools for creating new and powerful computers. Similar theories that researchers made for regular computers can be used in optical computers. The problem is how to transform photons into electric information. In some models, information travels between switches and photon transistors and gates in photon form. 

At the point where information travels to a switch or router a photovoltaic cell turns it into the electric form. And the other side the miniature LED turns it back into the photonic form. Or the router can replaced by using miniature mirrors. That increases the photonic volume in the data processing. 

"Researchers have highlighted the potential of on-chip nanophotonic systems as a solution to the challenges presented by traditional electrical networks. These systems utilize light for data transmission, offering increased bandwidth and speed". (ScitechDaily.com/Quantum Well Nanowire Array Micro-LEDs: The Future of On-chip Optical Communication)


The optical computer is light and in the binary version when light is on, the value in the system is one. And when light is off the value is zero. The problem is how to blink light fast enough. 


The answer for that could be nano-LEDs or a system that looks like a camera shutter. When the shutter lets the light go to the photovoltaic cell the value is one. And when the shutter is shut, the value is zero. That allows to make the optical or half-optical computer by using regular lights.

If the system uses two routes for transmitting data is possible to make even faster computers. The system requires AI-based control, but in a binary system values one and zero have different routes. So route one gives value one. And route two gives a value of zero. Or opposite. The speed of shutters determines the speed of the computer. 

Making the optical computer by using two lights that send their light to photovoltaic cells is possible. Cell number one gives a value of zero. Cell number one gives value one. There should be fast-moving shutters like in cameras between those photovoltaic cells and the light source. 

The nano LEDs can be the tools that can also make the optical computers fast. The system can control those nano LEDs with very high accuracy. Computers can use Those LEDs in extremely small nano-lasers. Those nano-lasers could give very high-accurate light impulses to systems that turn the binary data into quantum mode. 



"New research has discovered new interactions between neutrinos and photons, potentially shedding light on mysteries in particle physics and solar phenomena". (ScitechDaily.com/Neutrino-Photon Interactions: Unlocking the Mysteries of Particle Physics)



The neutrino is the almost perfect qubit. But the problem is: how to get neutrinos? 


The photon-neutrino interaction is the next-generation thing, that could use in quantum computers. Neutrino is a very weakly interacting particle, that interacts with photons. In some visions, the photons can be used to load information into neutrinos. 

The system uses single photons where information is loaded, and those photons will turn those neutrinos into qubits that can transport information over long distances. And then the neutrino detector will remove that data from neutrinos. The idea about neutrino qubits is based on the model that neutrino can have superposition like all other elementary particles.  

The problem with neutrinos is that they are hard to get. In some visions, the photons are used to stop the neutrino and then the information will load into it. Then some kind of EM radiation transfers that neutrino into the wanted direction. Then photon impacts or neutrino detectors can be used to download information from neutrino.


https://www.sciencealert.com/neutrinos-ghost-particles-can-interact-with-light-after-all


https://scitechdaily.com/neutrino-photon-interactions-unlocking-the-mysteries-of-particle-physics/


https://scitechdaily.com/quantum-well-nanowire-array-micro-leds-the-future-of-on-chip-optical-communication/


Comments

Popular posts from this blog

MIT's tractor beam can make the new types of SASER systems possible

   "This chip-based "tractor-beam," which uses an intensely focused beam of light to capture and manipulate biological particles without damaging the cells, could help biologists study the mechanisms of diseases."(Interesting Engineering, MIT’s Star Wars-inspired ‘tractor beam’ uses light to capture, manipulate cells) MIT's tractor beam can make the new types of SASER systems possible. The tractor beam just hovers the nanoparticle in air or medium, and then the laser or some other electromagnetic system transports oscillation into those particles. The ability to make cells and other particles hover in the system makes it possible to create particles whose energy level or resonance frequencies are accurately calculated things.  That thing makes it possible to create things that transmit wave movement accurately and cleanly. This is one version of the use of a tractor beam. Modern tractor beams are like acoustic tweezers where sound waves lock the object in its cr

The new observations tell that the thunderstorms form gamma-rays. That could make gamma-ray lasers possible.

  "An illustration of NASA’s research plane ER-2 flying over thunderstorms. Credit: University of Bergen / Mount Visual (CC BY 4.0), edited" (ScitechDaily, Surprising Discovery: NASA’s Retrofitted U2 Spy Plane Reveals Tropical Lightning Storms Are Radioactive) The new observations tell that the thunderstorms form gamma-rays. That could make gamma-ray lasers possible. The process has been observed by the NASA (Lockheed) ER-2 research plane, which is a modified U-2 spy plane. The gamma-ray formation in thunderstorms. Where lightning and electric fields release electrons that impact the air molecules and water droplets is an interesting thing. That thing opens the route to solving many mysteries.  "The general physics behind how thunderstorms create high-energy flashes of gamma radiation is not a mystery. As thunderstorms develop, swirling drafts drive water droplets, hail, and ice into a mixture that creates an electric charge much like rubbing a balloon on your shirt. Pos

Chinese innovations and space lasers are interesting combinations.

Above: "Tiangong is China's operational space station located in low Earth orbit. (Image credit: Alejomiranda via Getty Images)" (Scpace.com, China's space station, Tiangong: A complete guide) Chinese are close to making nuclear-powered spacecraft.  Almost every day, we can read about Chinese technical advances. So are, the Chinese more innovative than Western people? Or is there some kind of difference in culture and morale between Western and Chinese societies? The Chinese superiority in hypersonic technology is one of the things that tells something about the Chinese way of making things.  In China, the mission means. And the only thing that means is mission. That means that things like budgets and safety orders are far different from Western standards. If some project serves the Chinese communist party and PLA (People's Liberation Army) that guarantees unlimited resources for those projects. Chinese authorities must not care about the public opinion.  If we th