Skip to main content

Beyond Moore's law: how to make more powerful computers.

 Beyond Moore's law: how to make more powerful computers. 


The main problem is how to keep the temperature in the computer system low. 


Moore's law means that the number of transistors in microprocessors grows exponentially in time units. Or otherwise saying the number of transistors will double every year. Moore's law is not reality anymore. The reason for that is when the size of microprocessors and transistors is getting smaller, quantum phenomena like electromagnetic whirls cause problems. The resistance raises temperature which causes oscillation in wires. And that oscillation is the thing that disturbs high-power data transmission. 

The reason why the researchers wanted to keep the size of microchips small is that long wires cause temperature problems and the electromagnetic turbulence and outside electromagnetic effects are causing more problems for microchips than short wires. And that's why a small microchip is less vulnerable to outcoming radio interference than large-scale microchips. 



Above: A supercomputer center




Above fullerene nanotube. But that image could portray EMP-protected wire that is in a Faraday cage. 

How to remove the electromagnetic oscillation and outside EMP effect from computers? 


The EMP protection allows to use of larger-size microchips and high-power coolers can stabilize the wires. Reseachers must cover every single by using a Faraday cage, and the system must keep their temperatures low. 

But one version to remove the outcoming effects is to use the EMP-protection in the wires. The image that portrays a fullerene nanotube can portray EMP-protected wires. Those wires would be closed in a Faraday cage that removes the electromagnetic effect from those wires. 

1) The microchip's size can turn bigger. Making bigger microchips with high-power cooling systems makes it possible to create microchips that have more transistors and diodes than existing microchips. 

The advanced cooling systems can keep the temperature low. However, those microchips can be suitable only for supercomputer centers. Those large-size microchips require EMP protection and advanced cooling systems. And that's why they are not suitable for home computers. 

2) The system can use photonic computing. In photonic computers, the laser rays are replaced by regular copper wires. The laser transmits data to the small-size light- or photovoltaic cell. And that silicon crystal turns flashes of light into zero and one. Photonic computers can keep their temperatures lower than regular computers. 

3) The third method is to control the system more effectively. The AI-based operating systems can keep the temperature in the microchips optimal. And that means the AI-based systems can share missions between multi-core processors more effectively. In those systems when the temperature rises in one processor, the AI can route the missions into other processors. 

That allows for decreased temperature in those processors. And, of course, the system can share its missions between multiple components. Those components can be independently operating computers even if they are in the same box.  The AI-based network can share its missions also between physical systems. 


https://dailycaller.com/2018/04/09/rick-perry-supercomputers/


https://scitechdaily.com/beyond-moores-law-mits-innovative-lightning-system-combines-light-and-electrons-for-faster-computing/


https://en.wikipedia.org/wiki/Moore%27s_law

Comments

Popular posts from this blog

Chinese innovations and space lasers are interesting combinations.

Above: "Tiangong is China's operational space station located in low Earth orbit. (Image credit: Alejomiranda via Getty Images)" (Scpace.com, China's space station, Tiangong: A complete guide) Chinese are close to making nuclear-powered spacecraft.  Almost every day, we can read about Chinese technical advances. So are, the Chinese more innovative than Western people? Or is there some kind of difference in culture and morale between Western and Chinese societies? The Chinese superiority in hypersonic technology is one of the things that tells something about the Chinese way of making things.  In China, the mission means. And the only thing that means is mission. That means that things like budgets and safety orders are far different from Western standards. If some project serves the Chinese communist party and PLA (People's Liberation Army) that guarantees unlimited resources for those projects. Chinese authorities must not care about the public opinion.  If we th

Iron Dome is one of the most effective air defense systems.

The Iron Dome is a missile defense system whose missiles operate with highly sophisticated and effective artificial intelligence. The power of this missile defense base is in selective fire. The system calculates the incoming missile's trajectory. And it shoots only missiles that will hit the inhabited area. The system saves missiles and focuses defense on areas that mean something. The system shares the incoming missiles in, maybe two groups. Another is harmless and another is harmful.  Things like killer drones are also problematic because their trajectories are harder to calculate than ballistic missiles. The thing that makes drones dangerous is that they can make masks for ballistic missiles. And even if those drones are slow, all of them must be shot down.  The thing is that the cooperation between drone swarms and ballistic missiles is the next danger in conflict areas. In the film, you can see how drones make light images of the skies. The killer drones can also carry LED li

The innovative shield that protects OSIRIS-APEX can also protect the new hypersonic aircraft.

"NASA’s OSIRIS-APEX spacecraft successfully completed its closest solar pass, protected by innovative engineering solutions and showing improvements in onboard instruments. Credit: NASA’s Goddard Space Flight Center/CI Lab" (ScitechDaily, Innovative Engineering Shields NASA’s OSIRIS-APEX During Close Encounter With the Sun) The OSIRIS-APEX probe travels close to the sun. The mission plan is to research the sun. And especially find things that can warn about solar storms. Solar storms are things that can danger satellites at the Earth orbiter. And the purpose of OSIRIS-APEX is to find the method of how to predict those solar storms. Another thing is that the OSIRIS-APEX tests the systems and materials that protect this probe against heat and plasma impacts.  The same technology. The researchers created for OSIRIS-APEX can used in the materials and structures. That protects satellites against nuclear explosions. That means this kind of system delivers information on how to prot