Skip to main content

Removing radio interference gives a new boost to radio telescopes and communication.

 Removing radio interference gives a new boost to radio telescopes and communication. 



"An artist’s impression of a station of radio antennas. Each station has 256 antennas, and the SKA-Low ( Square Kilometre Array Low frequency)  telescope will have 512 stations. Credit: DISR" (ScitechDaily.com/

The world's largest telescope uses "radio quiet" electronics. And the same technology can give a boost to communication and computing. 

Radio quiet electronics are necessary for very highly accurate radio systems. The radio-quiet electronics remove the radio turbulence from the system. And that gives the world's largest radio telescope a new type of accuracy. The world's largest radio telescope is not the only thing that can get a boost from highly accurate radio communication. 

Things like extremely powerful supercomputers that are required to transform binary data into qubits require the ability to control extremely short-term data pulses. Radio-quiet electronics remove radio interference from the microchips. That makes it possible to create nanotechnical microchips that can be used as virtual quantum computers. The interference-free systems also can make it possible to make complicated molecules. 

But radio quiet electronics can also make it impossible to steal information from copper wires and supercomputers. These kinds of systems have many types of use. And one is to offer extremely secure communication by using wires. If the wire uses radio quiet technology, that makes it impossible to eavesdrop on electric noise that travels in that wire. 

The ability to remove the radio interference from the system makes them more accurate. And that makes it possible to use that kind of system in regular communication. The term regular communication means data communication,  used for "normal purposes". Removing radio interference from those systems makes it possible to use lower power and faster pulses than ever before. 




The "radio quiet" technology makes the world's largest telescope very highly accurate. And it can be used for communication and computing. 



"Scientists from the University of Konstanz developed a method using femtosecond light flashes to generate electron pulses with a duration of around five attoseconds. This breakthrough, offering a higher time resolution than light waves, paves the way for observing ultrafast phenomena, such as nuclear reactions". (ScitechDaily.com/0.000000000000000005 Seconds – Physicists Generate One of the Shortest Signals Ever Produced by Humans)



The fastest manmade radio burst lasts 0.000000000000000005 seconds. 


These kinds of bursts can make communication and computing systems more powerful and faster than ever before. And that is one case where removing the radio interference can make the system more accurate and powerful. The tracking systems cannot find the origin of extremely short radio bursts. 

Because there are no non-controlled oscillations in the microchips. They can control data with higher accuracy. Than ever before. Very fast data bursts can make the information transport more effective, and eavesdropping that kind of system is a very hard thing. In the cryptological process, the key element is to separate and detect the signal that carries information from non-proposal radio signals. 

In peacetime, the network can send so-called empty data packages between data-carrier data packages. That means the attacker can get the data, but there is a lot of work to separate proposal data from the empty data packages. In war, this kind of thing is not safe, because tracking systems can find the transmitters and then the artillery shells will impact the transmitters. 

https://scitechdaily.com/energizing-the-worlds-largest-radio-telescope-with-smart-box-radio-quiet-electronics/

https://scitechdaily.com/0-000000000000000005-seconds-physicists-generate-one-of-the-shortest-signals-ever-produced-by-humans/

Comments

Popular posts from this blog

MIT's tractor beam can make the new types of SASER systems possible

   "This chip-based "tractor-beam," which uses an intensely focused beam of light to capture and manipulate biological particles without damaging the cells, could help biologists study the mechanisms of diseases."(Interesting Engineering, MIT’s Star Wars-inspired ‘tractor beam’ uses light to capture, manipulate cells) MIT's tractor beam can make the new types of SASER systems possible. The tractor beam just hovers the nanoparticle in air or medium, and then the laser or some other electromagnetic system transports oscillation into those particles. The ability to make cells and other particles hover in the system makes it possible to create particles whose energy level or resonance frequencies are accurately calculated things.  That thing makes it possible to create things that transmit wave movement accurately and cleanly. This is one version of the use of a tractor beam. Modern tractor beams are like acoustic tweezers where sound waves lock the object in its cr

The new observations tell that the thunderstorms form gamma-rays. That could make gamma-ray lasers possible.

  "An illustration of NASA’s research plane ER-2 flying over thunderstorms. Credit: University of Bergen / Mount Visual (CC BY 4.0), edited" (ScitechDaily, Surprising Discovery: NASA’s Retrofitted U2 Spy Plane Reveals Tropical Lightning Storms Are Radioactive) The new observations tell that the thunderstorms form gamma-rays. That could make gamma-ray lasers possible. The process has been observed by the NASA (Lockheed) ER-2 research plane, which is a modified U-2 spy plane. The gamma-ray formation in thunderstorms. Where lightning and electric fields release electrons that impact the air molecules and water droplets is an interesting thing. That thing opens the route to solving many mysteries.  "The general physics behind how thunderstorms create high-energy flashes of gamma radiation is not a mystery. As thunderstorms develop, swirling drafts drive water droplets, hail, and ice into a mixture that creates an electric charge much like rubbing a balloon on your shirt. Pos

Chinese innovations and space lasers are interesting combinations.

Above: "Tiangong is China's operational space station located in low Earth orbit. (Image credit: Alejomiranda via Getty Images)" (Scpace.com, China's space station, Tiangong: A complete guide) Chinese are close to making nuclear-powered spacecraft.  Almost every day, we can read about Chinese technical advances. So are, the Chinese more innovative than Western people? Or is there some kind of difference in culture and morale between Western and Chinese societies? The Chinese superiority in hypersonic technology is one of the things that tells something about the Chinese way of making things.  In China, the mission means. And the only thing that means is mission. That means that things like budgets and safety orders are far different from Western standards. If some project serves the Chinese communist party and PLA (People's Liberation Army) that guarantees unlimited resources for those projects. Chinese authorities must not care about the public opinion.  If we th