Skip to main content

The new way to use biotechnology opens gates to unlimited fuel.


Kimmo Huosionmaa

Genome transfer between vegetables can be made possible to make field mustard, what creates bio gasoline. That would be the very interesting project for some companies, that operates in the field of biotechnology, and the traditional oil can also produce by the biotechnological method by the very simple way.  The bacteria, what products the oil can be stored in the anaerobic canisters, and there those bacteria can create oil and gas by using the biological method.


For the oil production bacteria can manipulate that way, the metabolism in that bacteria would be extremely fast. This would create the very good production for that matter. The same bacteria, what is used in the oil catastrophes for terminating the oil, would also make oil in the anaerobic conditions. And the methane can product in the same process. Methane is the hydrocarbon, what is the main component in the natural gas, but the systems, what burns that gas is not very precise, for what they are using in the combustion process.


The vegetables are extremely good platforms to test the methodology, what is used for genome transfers between the species. The nanotechnology allows to make synthetic DNA and we know chemicals, what the DNA consumes and we can synthetically produce them. The production of the synthetic DNA would be made by using the same methodology, what is used in the nano machine production. In those processes the single place of the atom is important.


And the same technology can be used in the placing the molecules in the DNA or RNA. This technology is very dangerous to test with animals because the resistance is always so high. The ethical and moral questions about transforming the genomes of the animals are very big. If that kind of tests is done, the public opinion would always be resistant. That testing the nanotechnology what makes artificial DNA is always dangerous because the organism would get new qualities, what might make them dangerous.


There are tests, where the genome transfer would be done with the cancer genomes to the vegetable cells. The mission of those tests is to make new kind of genome-manipulated trees, what would grow incredibly fast.  This technology would allow making more logging than ever. That kind of genome transfers can be very dangerous because the extreme fast-growing trees would replace the natural trees and this thing is very dangerous because the biodiversity of the species would suffer.


Biodiversity of the species guarantees, that the epidemics like viruses cannot destroy all trees from the forest. The genome transfer can help us to create the brand new kind of corn or other food vegetables. Those species can be immune to bugs because they would be poisonous in the growing period. When those hybrid corns, what might be combined with some poisonous vegetable would get dry, that poison would be removed independently, and then the corn would be collected.


Those corns could be made by using programmed cell death in the cells, what is creating the poison. And if those cells would involve with the genome, what makes them shine,  that would tell that the poison production is over. The corn is the most breed organism on the earth. There are created very short and at the same time dense species of the corn, what helps them to fight against weed.


Those corns just deny the sunlight from the weed, and that helps them to survive with smaller chemical doses. One of the most exciting ways to make genome transfer would combine the oil palm and some fast growing vegetable like banana or field mustard. The genomes, what creates the oil in the palm, would transfer in the field mustard. And in those cases, the canola oil would be replaced with the bio gasoline. That would make many very interesting thought in the eyes of the oil industry.


Comments

Popular posts from this blog

Chinese innovations and space lasers are interesting combinations.

Above: "Tiangong is China's operational space station located in low Earth orbit. (Image credit: Alejomiranda via Getty Images)" (Scpace.com, China's space station, Tiangong: A complete guide) Chinese are close to making nuclear-powered spacecraft.  Almost every day, we can read about Chinese technical advances. So are, the Chinese more innovative than Western people? Or is there some kind of difference in culture and morale between Western and Chinese societies? The Chinese superiority in hypersonic technology is one of the things that tells something about the Chinese way of making things.  In China, the mission means. And the only thing that means is mission. That means that things like budgets and safety orders are far different from Western standards. If some project serves the Chinese communist party and PLA (People's Liberation Army) that guarantees unlimited resources for those projects. Chinese authorities must not care about the public opinion.  If we th

Iron Dome is one of the most effective air defense systems.

The Iron Dome is a missile defense system whose missiles operate with highly sophisticated and effective artificial intelligence. The power of this missile defense base is in selective fire. The system calculates the incoming missile's trajectory. And it shoots only missiles that will hit the inhabited area. The system saves missiles and focuses defense on areas that mean something. The system shares the incoming missiles in, maybe two groups. Another is harmless and another is harmful.  Things like killer drones are also problematic because their trajectories are harder to calculate than ballistic missiles. The thing that makes drones dangerous is that they can make masks for ballistic missiles. And even if those drones are slow, all of them must be shot down.  The thing is that the cooperation between drone swarms and ballistic missiles is the next danger in conflict areas. In the film, you can see how drones make light images of the skies. The killer drones can also carry LED li

The innovative shield that protects OSIRIS-APEX can also protect the new hypersonic aircraft.

"NASA’s OSIRIS-APEX spacecraft successfully completed its closest solar pass, protected by innovative engineering solutions and showing improvements in onboard instruments. Credit: NASA’s Goddard Space Flight Center/CI Lab" (ScitechDaily, Innovative Engineering Shields NASA’s OSIRIS-APEX During Close Encounter With the Sun) The OSIRIS-APEX probe travels close to the sun. The mission plan is to research the sun. And especially find things that can warn about solar storms. Solar storms are things that can danger satellites at the Earth orbiter. And the purpose of OSIRIS-APEX is to find the method of how to predict those solar storms. Another thing is that the OSIRIS-APEX tests the systems and materials that protect this probe against heat and plasma impacts.  The same technology. The researchers created for OSIRIS-APEX can used in the materials and structures. That protects satellites against nuclear explosions. That means this kind of system delivers information on how to prot