Skip to main content

The new atom clocks make records in time measurement.


"Multilevel atoms on a superradiance potential “rollercoaster” inside an optical cavity. The system can be tuned to generate squeezing in a dark state where it will be immune to superradiance. CreditSteven Burrows/Rey Group". (ScitechDaily, Quantum Leap: How Spin Squeezing Pushes Limits of Atomic Clock Accuracy)


New atom clocks use a method called spin squeezing to measure time. The new, highly accurate atom clocks can measure things, like gravitational waves, and dark matter. And many other things. Ability to measure time very accurately based in a fully controlled environment, where outcoming electromagnetic effects are minimized. In the quantum atom clocks the number of used atoms is minimized. And that minimizes the atom's interrelational energy effect. 

The atom clocks are used to research things like time dilation and in highly accurate measurements. Large groups of atom clocks that interact with LIGO-type laser systems can act like an insect's net eye that measures gravity waves. 

Atom clock can measure the time between laser transmission and its echo very accurately. The maser- or radio maser technology makes it possible to create also high-accurate radio-wave-based radar systems. 


Atom clocks are required in radar technology. Where radio waves and echo travel between the object to the plate. In those systems, the radar measures the time that a radio wave travels between the transmitter and the object. The system measures the form of the object using multiple small antennas that send highly accurate coherent radio waves. 

The system must measure the time between transmission and echo in every single antenna separately. The maser system can use nanotechnology to make an antenna group that acts like an insect's net eye. And nanotechnical atom clocks are lightweight systems. 

In traditional atom clocks, there was Cesium in the chamber, and then the Geiger meter calculated the radioactive elements that travel in it. That thing gives a higher accurate time measurement than regular quartz crystals. But things like gravity wave measurements require more accurate systems. In the newer atom clocks, the radioactive element's temperature is fully controlled, and the radioactive crystals are protected against outcoming radiation. 

The idea is that there are things like nano-crystals where Cesium or some other atoms are stored. And in the new atom clocks radioactive atoms hover between sensors. 

The new atom clocks use nano-size crystals where cesium or strontium atoms are trapped. That makes atom clocks safer. However, the use of a minimal number of radioactive materials minimizes the interrelative effects of those atoms. This thing makes atom clocks safer in the case, that somebody wants to steal those systems. 

https://scitechdaily.com/quantum-leap-how-spin-squeezing-pushes-limits-of-atomic-clock-accuracy/


Comments

Popular posts from this blog

MIT's tractor beam can make the new types of SASER systems possible

   "This chip-based "tractor-beam," which uses an intensely focused beam of light to capture and manipulate biological particles without damaging the cells, could help biologists study the mechanisms of diseases."(Interesting Engineering, MIT’s Star Wars-inspired ‘tractor beam’ uses light to capture, manipulate cells) MIT's tractor beam can make the new types of SASER systems possible. The tractor beam just hovers the nanoparticle in air or medium, and then the laser or some other electromagnetic system transports oscillation into those particles. The ability to make cells and other particles hover in the system makes it possible to create particles whose energy level or resonance frequencies are accurately calculated things.  That thing makes it possible to create things that transmit wave movement accurately and cleanly. This is one version of the use of a tractor beam. Modern tractor beams are like acoustic tweezers where sound waves lock the object in its cr

The new observations tell that the thunderstorms form gamma-rays. That could make gamma-ray lasers possible.

  "An illustration of NASA’s research plane ER-2 flying over thunderstorms. Credit: University of Bergen / Mount Visual (CC BY 4.0), edited" (ScitechDaily, Surprising Discovery: NASA’s Retrofitted U2 Spy Plane Reveals Tropical Lightning Storms Are Radioactive) The new observations tell that the thunderstorms form gamma-rays. That could make gamma-ray lasers possible. The process has been observed by the NASA (Lockheed) ER-2 research plane, which is a modified U-2 spy plane. The gamma-ray formation in thunderstorms. Where lightning and electric fields release electrons that impact the air molecules and water droplets is an interesting thing. That thing opens the route to solving many mysteries.  "The general physics behind how thunderstorms create high-energy flashes of gamma radiation is not a mystery. As thunderstorms develop, swirling drafts drive water droplets, hail, and ice into a mixture that creates an electric charge much like rubbing a balloon on your shirt. Pos

Chinese innovations and space lasers are interesting combinations.

Above: "Tiangong is China's operational space station located in low Earth orbit. (Image credit: Alejomiranda via Getty Images)" (Scpace.com, China's space station, Tiangong: A complete guide) Chinese are close to making nuclear-powered spacecraft.  Almost every day, we can read about Chinese technical advances. So are, the Chinese more innovative than Western people? Or is there some kind of difference in culture and morale between Western and Chinese societies? The Chinese superiority in hypersonic technology is one of the things that tells something about the Chinese way of making things.  In China, the mission means. And the only thing that means is mission. That means that things like budgets and safety orders are far different from Western standards. If some project serves the Chinese communist party and PLA (People's Liberation Army) that guarantees unlimited resources for those projects. Chinese authorities must not care about the public opinion.  If we th