Skip to main content

AI and fusion.


Artist's rendition of a nuclear fusion reactor. (Intersting Engineering, New superconducting magnets ready for fusion reactions, say scientists)



AI has a great ability to control entireties. The new AI-controlled fusion systems can precisely control the energy levels in the systems.  The ignition point is one of the biggest problems in fusion systems. If the energy level in high-speed plasma is too high, that thing causes a shockwave that destroys the entirety. Plasma spreads to large areas that the magnetic fields can control. When ignition happens the system must press plasma together, or shockwave and energy entropy destroy the plasma ring. 

The precise point of the plasma ring where ignition happens is one of the most important things. If fusion starts inside the plasma ring, that thing causes an outgoing shockwave. And that shockwave destroys the plasma. If the ignition area covers the entire plasma ring, and it happens at its shell the ignition forms a shockwave that travels into the plasma and presses it forming large-area fusion. 

That's why ignition must happen in the entire plasma ring if we talk about torus or tokamak reactors. In some visions, the plasma ring will start in high-temperature conditions. 

Then the system sprays opposite pole particles into the tokamak reactor. And then those particles should impact the plasma ring. If those impacts cover the entire plasma ring, that should cause a pressure wave that will create fusion into the entire plasma ring. 


"A a view from inside the OMEGA target chamber during a direct-drive inertial fusion experiment at the University of Rochester’s Laboratory for Laser Energetics. Scientists fired 28 kilojoules of laser energy at small capsules filled with deuterium and tritium fuel, causing the capsules to implode and produce a plasma hot enough to initiate fusion reactions between the fuel nuclei".(ScitechDaily, Scientists Demonstrate Effective Fusion “Spark Plug” in Groundbreaking Experiments)

 The temperatures achieved at the heart of these implosions are as high as 100 million degrees Celsius (180 million degrees Fahrenheit). The speed at which the implosion takes place is typically between 500 and 600 kilometers per second (1.1 to 1.35 million miles per hour). The pressures at the core are up to 80 billion times greater than atmospheric pressure. Credit: University of Rochester Laboratory for Laser Energetics photo / Eugene Kowaluk" (ScitechDaily, Scientists Demonstrate Effective Fusion “Spark Plug” in Groundbreaking Experiments)


"Focused ion beam technology is pivotal in nanoscale materials processing, with a new EU report outlining its broad applications and potential for future breakthroughs in science and technology. Credit: SciTechDaily.com" (ScitechDaily, Ion Beams Unleashed: The Nanotechnology Game Changer)



The pulse-plasma fusion or "the candle model". 


Basically, crossing ion and anion beams can begin a fusion reaction. In those systems ions and anions are impacting. And that forms fusion that can release very high power energy impact. 

In the candle model, the anions and ions impact along with the laser beams that ignite fusion. One of those systems is two crossing linear accelerators where ions and anions impact. The linear accelerator can shoot those particles together. And in the same moment, the system shoots laser rays at the impact point. That is a simpler system than tokamak, and the fusion is easier to create. But there is always a problem with how to make fusion systems create more energy than used. 

The other version is called the candle model. In that model, the fusion system pushes ionized gas from the tube to the fusion chamber. Then the system injects opposite pole plasma into the ignition chamber. The system looks like NIF (National Ignition Facility). 

Except there is an ion pumping system around the protective building. The ion accelerators increase those ions speed and then they will impact with the anions that come from the tube. Along with high-power laser systems that system should create oscillating ion-anion fusion that could give more energy than it uses. 


https://www.freethink.com/energy/nuclear-fusion-reactions


https://interestingengineering.com/energy/new-superconducting-magnets-ready-for-fusion-reactions-say-scientists


https://lasers.llnl.gov/about/what-is-nif


https://scitechdaily.com/ion-beams-unleashed-the-nanotechnology-game-changer/


https://scitechdaily.com/scientists-demonstrate-effective-fusion-spark-plug-in-groundbreaking-experiments/

Comments

Popular posts from this blog

Chinese innovations and space lasers are interesting combinations.

Above: "Tiangong is China's operational space station located in low Earth orbit. (Image credit: Alejomiranda via Getty Images)" (Scpace.com, China's space station, Tiangong: A complete guide) Chinese are close to making nuclear-powered spacecraft.  Almost every day, we can read about Chinese technical advances. So are, the Chinese more innovative than Western people? Or is there some kind of difference in culture and morale between Western and Chinese societies? The Chinese superiority in hypersonic technology is one of the things that tells something about the Chinese way of making things.  In China, the mission means. And the only thing that means is mission. That means that things like budgets and safety orders are far different from Western standards. If some project serves the Chinese communist party and PLA (People's Liberation Army) that guarantees unlimited resources for those projects. Chinese authorities must not care about the public opinion.  If we th

Iron Dome is one of the most effective air defense systems.

The Iron Dome is a missile defense system whose missiles operate with highly sophisticated and effective artificial intelligence. The power of this missile defense base is in selective fire. The system calculates the incoming missile's trajectory. And it shoots only missiles that will hit the inhabited area. The system saves missiles and focuses defense on areas that mean something. The system shares the incoming missiles in, maybe two groups. Another is harmless and another is harmful.  Things like killer drones are also problematic because their trajectories are harder to calculate than ballistic missiles. The thing that makes drones dangerous is that they can make masks for ballistic missiles. And even if those drones are slow, all of them must be shot down.  The thing is that the cooperation between drone swarms and ballistic missiles is the next danger in conflict areas. In the film, you can see how drones make light images of the skies. The killer drones can also carry LED li

The innovative shield that protects OSIRIS-APEX can also protect the new hypersonic aircraft.

"NASA’s OSIRIS-APEX spacecraft successfully completed its closest solar pass, protected by innovative engineering solutions and showing improvements in onboard instruments. Credit: NASA’s Goddard Space Flight Center/CI Lab" (ScitechDaily, Innovative Engineering Shields NASA’s OSIRIS-APEX During Close Encounter With the Sun) The OSIRIS-APEX probe travels close to the sun. The mission plan is to research the sun. And especially find things that can warn about solar storms. Solar storms are things that can danger satellites at the Earth orbiter. And the purpose of OSIRIS-APEX is to find the method of how to predict those solar storms. Another thing is that the OSIRIS-APEX tests the systems and materials that protect this probe against heat and plasma impacts.  The same technology. The researchers created for OSIRIS-APEX can used in the materials and structures. That protects satellites against nuclear explosions. That means this kind of system delivers information on how to prot