Skip to main content

The new AI tools are making better drugs and predicting diseases.

"An AI model developed by the Beckman Institute enables precise medical diagnoses with visual maps for explanation, enhancing doctor-patient communication and facilitating early disease detection." (ScitechDaily, X Marks the Spot: AI’s Treasure Maps Lead to Early Disease Detection)


The GlycoSHIELD AI-based software will revolutionize drug development. The software can simulate the morphology of sugar coats in proteins. That makes it easier to simulate how proteins. And cell's ion pumps interact. Another tool that makes AI more powerful in drug development is new observation tools like nano-acoustic systems. Those systems with very accurate X-rays and other systems can search how neurotransmitters act between neurons. 

The ability to control pain requires the ability to deny the neuro-transmitters travel between neurons. The systems of tomorrow may use some other method than chemical opioids to deny neurotransmitters reach the receiving cell. Those methods can be acoustic systems that destroy neurotransmitters before they transmit the pain signal. Or there could be some kind of fat, that can collect neurotransmitters from the axon hole. The problem is how to transport that fat to the right point and how to remove that fat when the injury is improved or fixed. 

"A NIH-funded study led by Worcester Polytechnic Institute (WPI) aims to utilize artificial intelligence to guide chronic pain patients toward mindfulness-based treatments rather than opioids. By analyzing patient data through machine learning, the research seeks to identify individuals who would benefit most from non-pharmacological interventions, potentially reducing opioid dependence and offering more personalized care. This innovative approach, focusing on chronic lower back pain across diverse populations, could revolutionize pain management and healthcare costs. Credit: Melissa E. Arndt" (ScitechDaily, Avoiding Opiates – A New AI Prescription for Pain)


And that information makes it possible to create new treatments that can be suitable for replacing opioids. The nano-acoustic systems can trap neurotransmitters in the sound waves. Or the acoustic system can destroy those transmitters before they can travel between axons. The other version could be medicine, which marks those neurotransmitters that transport pain signals to immune cells that they must destroy or transport those neurotransmitters away. 

In some models, engineered fat cells. Or cells can put that fat between neurons in the case of pain. Those genetically engineered fat cells can collect or close those neurotransmitters in the fat. And when pain is over the immune cells can collect that fat away. This version requires genetical engineering so that the fat cell can mark this plague for immune cells so that they can remove it. And it must also tie those neurotransmitters. 

This is one vision for systems that can replace opioids. The AI can also collect and analyze information from different sources. That system makes it possible to combine complex data from complex sources. 




"GlycoSHIELD transforms the way sugar chains on proteins are modeled, facilitating drug development with its fast, user-friendly, and energy-efficient algorithm, marking a significant stride in both green computing and medical research. Model of the sugar shield (green) on the GABAA receptor (grey) in a membrane (red) generated by GlycoSHIELD. Credit: Cyril Hanus, Inserm, University Paris-Cité" (ScitechDaily, GlycoSHIELD: New Software Revolutionizes Drug Development)



By the way... 


The AI can predict medical diseases by combining data from other patients. And that thing makes the AI an ultimate assistant to doctors. But the AI can also predict things like volcanic eruptions and earthquakes. The AI can use similar algorithms in that process as it is used for analyzing humans. The sensors analyze different things, but they analyze temperature, earth oscillation, water flow in rivers, and other things like electricity. So the researchers can modify healthcare programs for that purpose. 

And this makes the AI a very good tool for predicting natural diseases. The AI collects datasets about things that happened before the volcano eruption. Then this system compares this dataset with data that sensors give about volcanoes. This makes the AI predict the eruptions. 

But also things like houses with bad conditions have certain details that cause fire and other damages. The AI can collect data about the details of houses that have bad electric wires. Or some other problems. Then the AI can compare that information with other houses. 

The thing is that corrosion is always a similar process. The corrosive process with similar metal alloy is always the same in certain temperatures, radiation, and acidic environments. That means the AI can predict dangerous corrosion very accurately. And that helps the operators plan the service for those tubes and other systems. 

https://scitechdaily.com/avoiding-opiates-a-new-ai-prescription-for-pain/

https://scitechdaily.com/glycoshield-new-software-revolutionizes-drug-development/


https://scitechdaily.com/x-marks-the-spot-ais-treasure-maps-lead-to-early-disease-detection/


Comments

Popular posts from this blog

MIT's tractor beam can make the new types of SASER systems possible

   "This chip-based "tractor-beam," which uses an intensely focused beam of light to capture and manipulate biological particles without damaging the cells, could help biologists study the mechanisms of diseases."(Interesting Engineering, MIT’s Star Wars-inspired ‘tractor beam’ uses light to capture, manipulate cells) MIT's tractor beam can make the new types of SASER systems possible. The tractor beam just hovers the nanoparticle in air or medium, and then the laser or some other electromagnetic system transports oscillation into those particles. The ability to make cells and other particles hover in the system makes it possible to create particles whose energy level or resonance frequencies are accurately calculated things.  That thing makes it possible to create things that transmit wave movement accurately and cleanly. This is one version of the use of a tractor beam. Modern tractor beams are like acoustic tweezers where sound waves lock the object in its cr

The new observations tell that the thunderstorms form gamma-rays. That could make gamma-ray lasers possible.

  "An illustration of NASA’s research plane ER-2 flying over thunderstorms. Credit: University of Bergen / Mount Visual (CC BY 4.0), edited" (ScitechDaily, Surprising Discovery: NASA’s Retrofitted U2 Spy Plane Reveals Tropical Lightning Storms Are Radioactive) The new observations tell that the thunderstorms form gamma-rays. That could make gamma-ray lasers possible. The process has been observed by the NASA (Lockheed) ER-2 research plane, which is a modified U-2 spy plane. The gamma-ray formation in thunderstorms. Where lightning and electric fields release electrons that impact the air molecules and water droplets is an interesting thing. That thing opens the route to solving many mysteries.  "The general physics behind how thunderstorms create high-energy flashes of gamma radiation is not a mystery. As thunderstorms develop, swirling drafts drive water droplets, hail, and ice into a mixture that creates an electric charge much like rubbing a balloon on your shirt. Pos

Chinese innovations and space lasers are interesting combinations.

Above: "Tiangong is China's operational space station located in low Earth orbit. (Image credit: Alejomiranda via Getty Images)" (Scpace.com, China's space station, Tiangong: A complete guide) Chinese are close to making nuclear-powered spacecraft.  Almost every day, we can read about Chinese technical advances. So are, the Chinese more innovative than Western people? Or is there some kind of difference in culture and morale between Western and Chinese societies? The Chinese superiority in hypersonic technology is one of the things that tells something about the Chinese way of making things.  In China, the mission means. And the only thing that means is mission. That means that things like budgets and safety orders are far different from Western standards. If some project serves the Chinese communist party and PLA (People's Liberation Army) that guarantees unlimited resources for those projects. Chinese authorities must not care about the public opinion.  If we th