Skip to main content

Graphene as an insulator. And nano-size hovercraft.


"Schematic representation showing how a graphene layer protects against water. The electrical current flowing along the edge of the topological insulator indenene remains completely unaffected by external influences. Credit: Jörg Bandmann, pixelwg" (ScitechDaily,Quantum Leap in Ultrafast Electronics Secured by Graphene’s Atomic Armor) If electricity transports water in one direction. The system can use the same effect to transport miniature robots on water. 



"Amalgamation of experimental images. At the top, a scanning tunneling microscopy image displays the graphene’s honeycomb lattice (the protective layer). In the center, electron microscopy shows a top view of the material indenene as a triangular lattice. Below it is a side view of the silicon carbide substrate. It can be seen that both the indenene and the graphene consist of a single atomic layer. Credit: Jonas Erhardt/Christoph Mäder)" (ScitechDaily,Quantum Leap in Ultrafast Electronics Secured by Graphene’s Atomic Armor) 



New electric systems require an extremely good insulator. Nanotechnology means that old-fashioned insulators are useless. A graphene membrane can protect components against water. The electric flow in the graphene makes it a good insulator that denies the inner side of the topological insulator getting outside effects. That kind of thing makes graphene one of the most interesting materials. The same thing that can make graphene repel water can be used in new nanotechnical solutions.

One of them is the nano-size robot that can hover above water. The system can make an electric load on graphene, and the system can hover above the layer using some nano-acoustic systems. That thing can make the small graphene hovercraft rise above the water layer. 


In a graphene structure, the fullerene balls are like small wheels that transport the miniature machine forward. There is the possibility that nano-diamonds send acoustic waves that make this system hover and move at least in liquids. In nanotechnology, small sizes of machines make them more effective and behave in other ways than their "big versions". 

In some models, graphene can trap water molecules. When the system turns the minus or plus poles in a certain way. It can be used to aim ion beams into the right position. The system can put behind the object, and then the ion cannon shoots ions. In that case, the opposite electric pole pulls ions into it. And that increases the ion system's accuracy. 

Graphene can also be used to trap water in it. The ability to change the direction of the water molecule makes it possible to create ultimate stealth materials. If the system can turn the molecule's positive or negative side outside, that thing makes this thing possible to create a layer that can pull electricity or radiowaves in it. 


https://scitechdaily.com/quantum-leap-in-ultrafast-electronics-secured-by-graphenes-atomic-armor/


https://learningmachines9.wordpress.com/2024/03/05/graphene-as-an-insulator-and-nano-size-hovercraft/



Comments

Popular posts from this blog

Chinese innovations and space lasers are interesting combinations.

Above: "Tiangong is China's operational space station located in low Earth orbit. (Image credit: Alejomiranda via Getty Images)" (Scpace.com, China's space station, Tiangong: A complete guide) Chinese are close to making nuclear-powered spacecraft.  Almost every day, we can read about Chinese technical advances. So are, the Chinese more innovative than Western people? Or is there some kind of difference in culture and morale between Western and Chinese societies? The Chinese superiority in hypersonic technology is one of the things that tells something about the Chinese way of making things.  In China, the mission means. And the only thing that means is mission. That means that things like budgets and safety orders are far different from Western standards. If some project serves the Chinese communist party and PLA (People's Liberation Army) that guarantees unlimited resources for those projects. Chinese authorities must not care about the public opinion.  If we th

Iron Dome is one of the most effective air defense systems.

The Iron Dome is a missile defense system whose missiles operate with highly sophisticated and effective artificial intelligence. The power of this missile defense base is in selective fire. The system calculates the incoming missile's trajectory. And it shoots only missiles that will hit the inhabited area. The system saves missiles and focuses defense on areas that mean something. The system shares the incoming missiles in, maybe two groups. Another is harmless and another is harmful.  Things like killer drones are also problematic because their trajectories are harder to calculate than ballistic missiles. The thing that makes drones dangerous is that they can make masks for ballistic missiles. And even if those drones are slow, all of them must be shot down.  The thing is that the cooperation between drone swarms and ballistic missiles is the next danger in conflict areas. In the film, you can see how drones make light images of the skies. The killer drones can also carry LED li

The innovative shield that protects OSIRIS-APEX can also protect the new hypersonic aircraft.

"NASA’s OSIRIS-APEX spacecraft successfully completed its closest solar pass, protected by innovative engineering solutions and showing improvements in onboard instruments. Credit: NASA’s Goddard Space Flight Center/CI Lab" (ScitechDaily, Innovative Engineering Shields NASA’s OSIRIS-APEX During Close Encounter With the Sun) The OSIRIS-APEX probe travels close to the sun. The mission plan is to research the sun. And especially find things that can warn about solar storms. Solar storms are things that can danger satellites at the Earth orbiter. And the purpose of OSIRIS-APEX is to find the method of how to predict those solar storms. Another thing is that the OSIRIS-APEX tests the systems and materials that protect this probe against heat and plasma impacts.  The same technology. The researchers created for OSIRIS-APEX can used in the materials and structures. That protects satellites against nuclear explosions. That means this kind of system delivers information on how to prot