Skip to main content

Quantum breakthrough: stable quantum entanglement at room temperature.


"Researchers have achieved quantum coherence at room temperature by embedding a light-absorbing chromophore within a metal-organic framework. This breakthrough, facilitating the maintenance of a quantum system’s state without external interference, marks a significant advancement for quantum computing and sensing technologies". (ScitechDaily, Quantum Computing Breakthrough: Stable Qubits at Room Temperature)

Japanese researchers created stable quantum entanglement at room temperature. The system used a light-absorbing chromophore along with a metal-organic framework. This thing is a great breakthrough in quantum technology. The room-temperature quantum computers are the new things, that make the next revolution in quantum computing. This technology may come to markets sooner than we even think. The quantum computer is the tool, that requires advanced operating- and support systems. 

When the support system sees that the quantum entanglement starts to reach energy stability. It must start to create another quantum entanglement and transport data out from the first entanglement. Another way to make the quantum entanglement stable. Is to pump energy out from the receiving part. 

Information is like the plague on the qubit. And quantum entanglement is like a wire that transports that plague to another qubit. So, qubits are particles in both ends of quantum entanglement. The system makes superposition and entanglement between those particles. 

In that process, the system adjusts those particle's oscillations into the same frequency, and if another particle's energy level is lower, that makes the energy and information flow to the lower energy particle. Stable quantum entanglement is required. That the system can keep receiving part of the quantum entanglement at a lower energy level. 



"The team has developed a world-leading MWP (Microwave Photonics) chip capable of performing ultrafast analog electronic signal processing and computation using optics. Credit: City University of Hong Kong" (ScitechDaily, 1,000x Faster: Ultrafast Photonics Chip Reshapes Signal Processing)

When both sides of the qubit are at the same level, a standing wave between them breaks quantum entanglement. The support system can send a side-coming laser beam to the receiving qubit. That makes it transport energy into the lower energy particles. Then the system must create a qubit to the opposite side. Those qubits can form a morphing network in the system

The AI-controlled systems require microchips that can operate at very high speed. The photonic microchips are 1000X faster than regular microchips. The photonic microchips do not form magnetic fields around them. And that system can operate with quantum computers. The AI-based operating systems control photonic microchips whose mission is to turn binary data into qubits. And that thing makes photonic microchips more powerful than ever before. 


AI-based kernels and operating systems increase those systems' power. 


In the structure, the photonic microchips can also act as morphing tools. It's possible. That the morphing microprocessor can change its state between quantum computers. And binary computer. That makes this kind of system flexible and powerful. The new metamaterials make it possible to create switches and logical gates that make this system more effective. 

When researchers want to make extremely fast binary microprocessors. They can use three lines. Two lines transport data. The operating system system interprets data that travels in line 1 as zero (0). Data that travels in line 2 is interpreted as one (1). There is also the third line, that tells that the power is on in the system. This kind of system can have three layers. 


1) Regular binary layer that runs AI-based operating system. 

2) Photonic processor layer. 

3) Quantum layer.


The regular binary layer controls the AI-based kernel. The photonic microchips can be even faster than nobody believed. The system may give numbers for every data impulse that it sends through photonic microchips. In that system, the bit has a recognition part, but that requires the AI-based operating system and AI-based kernel. 

In that system, the transmitter sends number 1 (or 3,5,7...). That tells the operating system that the data bit comes from line one. And when the system sends 2 (or 4,6,8..) That thing is interpreted as line 2. The regular binary system is the thing that controls the photonic system. 

That helps the AI-based operating system connect those bits in the right order if there is a malfunction in those lasers. The wire 1 can give odd numbers to the bit. And line can give an even number for the bit. That ability to number those bits makes it possible to transport data in one line. 


https://scitechdaily.com/1000x-faster-ultrafast-photonics-chip-reshapes-signal-processing/


https://scitechdaily.com/metamaterial-magic-scientists-develop-new-material-that-can-dynamically-tune-its-shape-and-mechanical-properties-in-real-time/



https://scitechdaily.com/quantum-computing-breakthrough-stable-qubits-at-room-temperature/





Comments

Popular posts from this blog

Chinese innovations and space lasers are interesting combinations.

Above: "Tiangong is China's operational space station located in low Earth orbit. (Image credit: Alejomiranda via Getty Images)" (Scpace.com, China's space station, Tiangong: A complete guide) Chinese are close to making nuclear-powered spacecraft.  Almost every day, we can read about Chinese technical advances. So are, the Chinese more innovative than Western people? Or is there some kind of difference in culture and morale between Western and Chinese societies? The Chinese superiority in hypersonic technology is one of the things that tells something about the Chinese way of making things.  In China, the mission means. And the only thing that means is mission. That means that things like budgets and safety orders are far different from Western standards. If some project serves the Chinese communist party and PLA (People's Liberation Army) that guarantees unlimited resources for those projects. Chinese authorities must not care about the public opinion.  If we th

Iron Dome is one of the most effective air defense systems.

The Iron Dome is a missile defense system whose missiles operate with highly sophisticated and effective artificial intelligence. The power of this missile defense base is in selective fire. The system calculates the incoming missile's trajectory. And it shoots only missiles that will hit the inhabited area. The system saves missiles and focuses defense on areas that mean something. The system shares the incoming missiles in, maybe two groups. Another is harmless and another is harmful.  Things like killer drones are also problematic because their trajectories are harder to calculate than ballistic missiles. The thing that makes drones dangerous is that they can make masks for ballistic missiles. And even if those drones are slow, all of them must be shot down.  The thing is that the cooperation between drone swarms and ballistic missiles is the next danger in conflict areas. In the film, you can see how drones make light images of the skies. The killer drones can also carry LED li

The innovative shield that protects OSIRIS-APEX can also protect the new hypersonic aircraft.

"NASA’s OSIRIS-APEX spacecraft successfully completed its closest solar pass, protected by innovative engineering solutions and showing improvements in onboard instruments. Credit: NASA’s Goddard Space Flight Center/CI Lab" (ScitechDaily, Innovative Engineering Shields NASA’s OSIRIS-APEX During Close Encounter With the Sun) The OSIRIS-APEX probe travels close to the sun. The mission plan is to research the sun. And especially find things that can warn about solar storms. Solar storms are things that can danger satellites at the Earth orbiter. And the purpose of OSIRIS-APEX is to find the method of how to predict those solar storms. Another thing is that the OSIRIS-APEX tests the systems and materials that protect this probe against heat and plasma impacts.  The same technology. The researchers created for OSIRIS-APEX can used in the materials and structures. That protects satellites against nuclear explosions. That means this kind of system delivers information on how to prot