Skip to main content

The development of quantum computers is faster than nobody expected.

In 2019 the Conversation magazine published an article that says "A quantum computing future is unlikely, due to random hardware errors". And that's it. The hardware random errors would destroy the quantum calculation and quantum communication. The thing is that quantum computers are under development and many highly trained persons are working with quantum computing. 

The development process of quantum computers is faster than ever before, and the reason for that is that also quantum computers and AI are participating in this process. Today researchers are working to solve things like how to eliminate outside effects from quantum computers. And those things are been successful. But the fact is that the random hardware errors must be eliminated so that quantum computers can turn everyday tools. 



"Artist’s impression of a platform for linear mechanical quantum computing (LMQC). The central transparent element is a phonon beam splitter. Blue and red marbles represent individual phonons, which are the collective mechanical motions of quadrillions of atoms. These mechanical motions can be visualized as surface acoustic waves coming into the beam splitter from opposite directions. The two-phonon interference at the beam splitter is central to LMQC. The output phonons emerging from the image are in a two-phonon state, with one “blue” phonon and one “red” phonon grouped together. Credit: Peter Allen" (ScitechDaily.com/Researchers “Split” Phonons in Step Toward New Type of Linear Mechanical Quantum Computer)



This could be a model for the hybrid quantum-classical computer. The system could jump between quantum and binary states. 


"An illustration of Schrödinger’s cat code. In a significant quantum computing breakthrough, physicists from EPFL have proposed a “critical Schrödinger cat code” for advanced resilience to errors, an encoding scheme inspired by Schrödinger’s thought experiment. This novel system, operating in a hybrid regime, not only provides enhanced error suppression capabilities but also displays remarkable resistance to errors from random frequency shifts, paving the way for devices with several interacting qubits, the minimal requirement for a quantum computer. Credit: Vincenzo Savona (EPFL)" (ScitechDaily.com/Critical Schrödinger Cat Code: Quantum Computing Breakthrough for Better Qubits)


The new ideas of splitting photons can revolutionize quantum computers and turn the "intelligent wires" possible. The intelligent wires are the series of atom-size quantum computers. Theoretically, those things can make any copper wire quantum computers. Splitting photons and other particles is a good way to make fully identical particle pairs. And those things are easy to superposition. The split photons can make a new type of mechanical quantum computer possible. And when quantum computers turn more common, more and more users can get access to those systems. And that causes its risks. 

The fact is that the qubits are more sensitive to outside effects than binary systems. Things like error correlations require another quantum computer. In the classic model, the system uses two quantum computers. And if the gravitational waves or FRBs affect both of those systems. The error detection doesn't work. But there is the possibility that the system uses two waves for detecting errors. The system sends information twice through those systems. And if the answers are the same, the system can give the right answer. 

A hybrid quantum-classical computer can solve the problem of how to drive the information in and out of the quantum system. That kind of system can switch between quantum and binary states. 

That means real portable quantum computers are far away in the future. Or they might be closer than we expect. The thing is that there is a new type of system that can change between quantum and binary systems. The system drives information in those hybrid systems in the binary form. And then the system turns itself into a quantum state. That system can make it easier to drive data in and out of the quantum system. 

Researchers are working hard to make better qubits. That thing makes it possible to create new and more powerful systems that can maintain the qubits longer time. And maybe tomorrow quantum computers will turn all other systems old-fashion. But there is a lot of work to make that kind of thing. 



https://theconversation.com/a-quantum-computing-future-is-unlikely-due-to-random-hardware-errors-126503


https://scitechdaily.com/critical-schrodinger-cat-code-quantum-computing-breakthrough-for-better-qubits/


https://scitechdaily.com/random-hardware-errors-make-a-quantum-computing-future-unlikely/

 

https://scitechdaily.com/researchers-split-phonons-in-step-toward-new-type-of-linear-mechanical-quantum-computer/

Comments

Popular posts from this blog

Chinese innovations and space lasers are interesting combinations.

Above: "Tiangong is China's operational space station located in low Earth orbit. (Image credit: Alejomiranda via Getty Images)" (Scpace.com, China's space station, Tiangong: A complete guide) Chinese are close to making nuclear-powered spacecraft.  Almost every day, we can read about Chinese technical advances. So are, the Chinese more innovative than Western people? Or is there some kind of difference in culture and morale between Western and Chinese societies? The Chinese superiority in hypersonic technology is one of the things that tells something about the Chinese way of making things.  In China, the mission means. And the only thing that means is mission. That means that things like budgets and safety orders are far different from Western standards. If some project serves the Chinese communist party and PLA (People's Liberation Army) that guarantees unlimited resources for those projects. Chinese authorities must not care about the public opinion.  If we th

Iron Dome is one of the most effective air defense systems.

The Iron Dome is a missile defense system whose missiles operate with highly sophisticated and effective artificial intelligence. The power of this missile defense base is in selective fire. The system calculates the incoming missile's trajectory. And it shoots only missiles that will hit the inhabited area. The system saves missiles and focuses defense on areas that mean something. The system shares the incoming missiles in, maybe two groups. Another is harmless and another is harmful.  Things like killer drones are also problematic because their trajectories are harder to calculate than ballistic missiles. The thing that makes drones dangerous is that they can make masks for ballistic missiles. And even if those drones are slow, all of them must be shot down.  The thing is that the cooperation between drone swarms and ballistic missiles is the next danger in conflict areas. In the film, you can see how drones make light images of the skies. The killer drones can also carry LED li

The innovative shield that protects OSIRIS-APEX can also protect the new hypersonic aircraft.

"NASA’s OSIRIS-APEX spacecraft successfully completed its closest solar pass, protected by innovative engineering solutions and showing improvements in onboard instruments. Credit: NASA’s Goddard Space Flight Center/CI Lab" (ScitechDaily, Innovative Engineering Shields NASA’s OSIRIS-APEX During Close Encounter With the Sun) The OSIRIS-APEX probe travels close to the sun. The mission plan is to research the sun. And especially find things that can warn about solar storms. Solar storms are things that can danger satellites at the Earth orbiter. And the purpose of OSIRIS-APEX is to find the method of how to predict those solar storms. Another thing is that the OSIRIS-APEX tests the systems and materials that protect this probe against heat and plasma impacts.  The same technology. The researchers created for OSIRIS-APEX can used in the materials and structures. That protects satellites against nuclear explosions. That means this kind of system delivers information on how to prot