Skip to main content

The nanodroplets and nanopolymers can be the next-generation tools for nanotechnology.



"A schematic illustration depicting the generation of microdroplets through the integration of inverse colloidal crystal structures into a microfluidic system. The system demonstrated the capability to produce over 10,000 droplets per second. Credit: Masumi Yamada from Chiba University" (ScitechDaily, Pore Power Unleashed: Revolutionizing Microfluidics With High-Speed Droplet Production) 

The high-speed droplet production can benefit systems that transport lots of viruses. Or otherways packed genetic material in the targeted cell cultures. The high-speed droplets can used to clean electric components or remove non-wanted cells from layers. Those systems also can destroy targeted cells shooting them with high-speed droplets. 

The nanodroplets can revolutionize fluids. The nanodroplets can used as acoustic transmitters. In that case, the droplet that can be gelatinous or hard will send in the structure. Then acoustic system makes that thing resonate. That resonance will send sound waves through the structure. However, the nanofroplets can used to carry polymers into the cells. 

Those droplets can carry the "Pumbler's Nightmare" BCP (Block copolymers) nanopolymers in the wanted points of the cells. Those structures are created using the Block copolymers, that can order autonomously. 


Scheme of a micelle formed by phospholipids in an aqueous solution (Wikipedia, Micelle). In micelle, the hydrophobic tails of other lipids can connect with the hydrophobic head of those lipids in the ball-molecule. 

The Micelle ball- polymers can act as touchpoints. And those balls can turn into long chains. Or they can be used to adjust the way how other polymer chains touch each other. The system can also create long polymer chains using those ball-shaped polymers that touch together. 


Researchers at POSTECH have successfully created the complex “plumber’s nightmare” structure in block copolymers, a groundbreaking achievement that paves the way for new applications in nano-technology and material science. This discovery demonstrates the potential for crafting diverse polymer nanostructures with tailored properties. (Artist’s concept). Credit: SciTechDaily (ScitechDaily, Turning the Impossible Possible: Korean Scientists Have Created the Notorious Plumber’s Nightmare Structure)






Visualization of nanostructures realized using di-end-functionalized BCPs. Credit: POSTECH (ScitechDaily, Turning the Impossible Possible: Korean Scientists Have Created the Notorious Plumber’s Nightmare Structure)


The new material called "Pumbler's Nightmare" is one of the examples of the new nanopolymer structures. 


Self-assembling and self-forming materials are the newest tools that AI and nanotechnology can create. The idea of those fundamental nanomaterials is that they are based on long polymer chains and there is no limit to the length of polymers. That thing makes it possible to create crystal-type materials. That can form certain structures. And that thing makes the new technology about things like self-repairing structures possible. 

In that material nanotechnology makes it possible to create the material that can make many things. Those nanomaterials can used to control tube leaks. Or they can used to replace antibiotics. 

In the ideal case, that material could change its form between solid and liquid. The system could turn those nanomaterials or molecules in different positions to make bonds or cut them between those molecules. If that thing is possible to make using acoustic impulses that material can replace some antibiotics and cytostates. 

The self-assembling complicated nanomaterials can also used in medical treatment for closing blood veins and filling injuries. The "Pumbler's Nightmare" is a hard nanostructure. Their nanopolymers form foam-like hard structures. The "Pumbler's Nightmare"  can also used to destroy cells, like bacteria that are resistant to antibiotics. In the ideal cases. That kind of nanomaterial could return to the liquid form when it gets some kind of signal. In some ideas, the acoustic system can turn those nanoparticles in a different direction. And then they cut the bonds between those molecules. 


https://scitechdaily.com/pore-power-unleashed-revolutionizing-microfluidics-with-high-speed-droplet-production/


https://scitechdaily.com/turning-the-impossible-possible-korean-scientists-have-created-the-notorious-plumbers-nightmare-structure/


https://en.wikipedia.org/wiki/Microfluidics


https://en.wikipedia.org/wiki/Micelle

https://en.wikipedia.org/wiki/Micelle#Block_copolymer_micelles


https://en.wikipedia.org/wiki/Self-assembly


Comments

Popular posts from this blog

Chinese innovations and space lasers are interesting combinations.

Above: "Tiangong is China's operational space station located in low Earth orbit. (Image credit: Alejomiranda via Getty Images)" (Scpace.com, China's space station, Tiangong: A complete guide) Chinese are close to making nuclear-powered spacecraft.  Almost every day, we can read about Chinese technical advances. So are, the Chinese more innovative than Western people? Or is there some kind of difference in culture and morale between Western and Chinese societies? The Chinese superiority in hypersonic technology is one of the things that tells something about the Chinese way of making things.  In China, the mission means. And the only thing that means is mission. That means that things like budgets and safety orders are far different from Western standards. If some project serves the Chinese communist party and PLA (People's Liberation Army) that guarantees unlimited resources for those projects. Chinese authorities must not care about the public opinion.  If we th

Iron Dome is one of the most effective air defense systems.

The Iron Dome is a missile defense system whose missiles operate with highly sophisticated and effective artificial intelligence. The power of this missile defense base is in selective fire. The system calculates the incoming missile's trajectory. And it shoots only missiles that will hit the inhabited area. The system saves missiles and focuses defense on areas that mean something. The system shares the incoming missiles in, maybe two groups. Another is harmless and another is harmful.  Things like killer drones are also problematic because their trajectories are harder to calculate than ballistic missiles. The thing that makes drones dangerous is that they can make masks for ballistic missiles. And even if those drones are slow, all of them must be shot down.  The thing is that the cooperation between drone swarms and ballistic missiles is the next danger in conflict areas. In the film, you can see how drones make light images of the skies. The killer drones can also carry LED li

The innovative shield that protects OSIRIS-APEX can also protect the new hypersonic aircraft.

"NASA’s OSIRIS-APEX spacecraft successfully completed its closest solar pass, protected by innovative engineering solutions and showing improvements in onboard instruments. Credit: NASA’s Goddard Space Flight Center/CI Lab" (ScitechDaily, Innovative Engineering Shields NASA’s OSIRIS-APEX During Close Encounter With the Sun) The OSIRIS-APEX probe travels close to the sun. The mission plan is to research the sun. And especially find things that can warn about solar storms. Solar storms are things that can danger satellites at the Earth orbiter. And the purpose of OSIRIS-APEX is to find the method of how to predict those solar storms. Another thing is that the OSIRIS-APEX tests the systems and materials that protect this probe against heat and plasma impacts.  The same technology. The researchers created for OSIRIS-APEX can used in the materials and structures. That protects satellites against nuclear explosions. That means this kind of system delivers information on how to prot