Skip to main content

Ions and metasurfaces are the new tools for robotics.


"Schematics of multiplexing metadevices based on coherent wave interferences. Credit: OEA" (ScitechDaily, Pushing Optical Limits: Metasurfaces Achieve Near Infinite Light Control in a Single Device)


The new metasurfaces and ion channels turn information technology and nanomechanics forever. The photonic or photon-reacting and interacting metasurfaces make it possible to create devices that can operate independently in complex situations. 

Those photonic-controlled devices can make things like highly advanced morphing systems possible. In nanotechnology, it's essential to control systems. That is smaller than some molecules. And the metasurfaces are one thing that makes that system possible. When we think about systems like cars and robots that can change their shape, we must realize one thing. 

Those morphing surfaces will be created by nanomachines that act as the morphing neural network. Those small robots can take any form that they ordered. The system can interact with outsider observers like small drones that can tell that small, soundbite size nanorobot swarm how they should move to take a certain form. That thing means that the AI-controlled system can take any shape that it sees. The drone can make the 3D scanned image, and then order those nanorobots to take it. 

In some futuristic visions of the future, the data travels in the organic network. Those systems can be neurons or some hybrid cells. The long threads transport information like neurons. Those systems can transport information between those neurons by using the lion channels. Those ion channels make it possible for information to travel most of the time in chemical form. When that neurotransmitter reaches that neurotransmitter, it sends an electric impulse to the microchip that decodes the message. 

Ion channels are interesting. Those channels can form the ion superhighways that can make new ultra-secured data transmission possible. In those nanorobots, the system can have a small tube that transfers those ions from one place to another. The ion can transport information as well as electrons or photons.  There are multiple ways to make that data transportation. 



"Record ion speeds are achieved in organic conductors where local molecules can attract or repel ions from nanochannels that act as ion superhighways. Credit: Second Bay Studios" (ScitechDaily, Ion Superhighways: The Nanotech Breakthrough Powering Tomorrow’s Tech)

One is to use two ion channels and shoot ions through them. The ion channel one is the one in the binary system. And the ion channel two is the zero in the binary system. Those ion channels can be thousands of kilometers long. And that allows the system to transport ions over long distances. 

In some Sci-fi-Books that kind of system can also transport antimatter like positrons and anti-protons into the wanted point. This kind of system can installed in the robot bug. The robot bug transports those antimatter particles to the wanted point in the magnetic chamber, that puts them to flow. 

That denies antimatter contact with the walls of that chamber. Then the robot injects antiparticles through that ion accelerator or ion proboscis. That kind of weapon would be extremely horrible. And one of them can destroy even warships. The antimatter energy level is so high, that a gram of that matter turns the entire Earth into a molecular cloud. 

The ion-based information transport system is one of the versions of ultra-secured data transmission. The idea is that. The system can deny the outsider observer. To see ion. If the outsider harms the ion channel that thing is seen in control rooms. The receiving system must require the energy level and speed of ions to be at a certain level. Those things tell that ion is part of the message. 

The ion channel is also a vacuum, and if somebody wants to steal information, that launches the pressure sensor and denies the ion flow. The ion systems might not look as effective and wonderful as photonic systems. But they can interact between living neurons or organic microchips and regular, non-organic systems. In that system, the microchip transports information to the neuron cell's ion channel using the ions. 


https://scitechdaily.com/ion-superhighways-the-nanotech-breakthrough-powering-tomorrows-tech/


https://scitechdaily.com/pushing-optical-limits-metasurfaces-achieve-near-infinite-light-control-in-a-single-device/

Comments

Popular posts from this blog

MIT's tractor beam can make the new types of SASER systems possible

   "This chip-based "tractor-beam," which uses an intensely focused beam of light to capture and manipulate biological particles without damaging the cells, could help biologists study the mechanisms of diseases."(Interesting Engineering, MIT’s Star Wars-inspired ‘tractor beam’ uses light to capture, manipulate cells) MIT's tractor beam can make the new types of SASER systems possible. The tractor beam just hovers the nanoparticle in air or medium, and then the laser or some other electromagnetic system transports oscillation into those particles. The ability to make cells and other particles hover in the system makes it possible to create particles whose energy level or resonance frequencies are accurately calculated things.  That thing makes it possible to create things that transmit wave movement accurately and cleanly. This is one version of the use of a tractor beam. Modern tractor beams are like acoustic tweezers where sound waves lock the object in its cr

The new observations tell that the thunderstorms form gamma-rays. That could make gamma-ray lasers possible.

  "An illustration of NASA’s research plane ER-2 flying over thunderstorms. Credit: University of Bergen / Mount Visual (CC BY 4.0), edited" (ScitechDaily, Surprising Discovery: NASA’s Retrofitted U2 Spy Plane Reveals Tropical Lightning Storms Are Radioactive) The new observations tell that the thunderstorms form gamma-rays. That could make gamma-ray lasers possible. The process has been observed by the NASA (Lockheed) ER-2 research plane, which is a modified U-2 spy plane. The gamma-ray formation in thunderstorms. Where lightning and electric fields release electrons that impact the air molecules and water droplets is an interesting thing. That thing opens the route to solving many mysteries.  "The general physics behind how thunderstorms create high-energy flashes of gamma radiation is not a mystery. As thunderstorms develop, swirling drafts drive water droplets, hail, and ice into a mixture that creates an electric charge much like rubbing a balloon on your shirt. Pos

Chinese innovations and space lasers are interesting combinations.

Above: "Tiangong is China's operational space station located in low Earth orbit. (Image credit: Alejomiranda via Getty Images)" (Scpace.com, China's space station, Tiangong: A complete guide) Chinese are close to making nuclear-powered spacecraft.  Almost every day, we can read about Chinese technical advances. So are, the Chinese more innovative than Western people? Or is there some kind of difference in culture and morale between Western and Chinese societies? The Chinese superiority in hypersonic technology is one of the things that tells something about the Chinese way of making things.  In China, the mission means. And the only thing that means is mission. That means that things like budgets and safety orders are far different from Western standards. If some project serves the Chinese communist party and PLA (People's Liberation Army) that guarantees unlimited resources for those projects. Chinese authorities must not care about the public opinion.  If we th