Skip to main content

Bacteriophages can take the form of sunflowers.



"McMaster University researchers found that bacteriophages treated under specific conditions form flower-like structures that are highly efficient in targeting bacteria, opening new possibilities for the treatment and detection of diseases." (ScitechDaily, Nature-Inspired Viruses Form Living “Sunflowers” To Combat Disease)

Complicated DNA-controlled structures can revolutionize medicine development. But it can make also many more things. 

Bacteriophages can make forms that look like sunflowers. Their ability to combine their bodies makes phages more effective against targeted bacteria. Sunflower-form virus structures can be a tool for researchers to use against infections. However, those virus structures are also interesting tools for people who create nanomachines and nanostructures. 

As you see, viruses can make complicated structures. And that makes it possible to use them to create structures for nanomechanics. The DNA-controlled crystal formation is the tool that developers can use to create the nanomachines. The nanomaterial means material that looks the same as normal material. But there are nanometer-sized internal structures. That gives those materials new abilities. If we think about things like nanotechnical wires. 



The ability to create complicated structures. Can make it possible to create medicines and structures that can make many things possible from medicine to nanomachines and DNA-based data storage. 

The nanotechnical wire can have structures that look like plates. There can be a pike on the other side of the plate. And hole at another side. That thing makes it possible to increase the length of the wire. Or if something cuts the wire. It's possible to create a structure that can fix itself. The only need is to put those gripping surfaces together. The nanowires can form structures like nano-canvas that can fix their damages without needing help. 

Nanotechnology is an impressive tool. The viruses that can take any form are the things that can make many things for nanotechnology. When the virus is made the structure the UV-radiation can destroy the DNA. And that helps to create a complicated crystal structure that is suitable for nanotechnology. 

The data can be stored in genetically engineered cells to create the wanted forms. (ScitechDaily, Nature-Inspired Viruses Form Living “Sunflowers” To Combat Disease)



"Colorized groups of phages compared to flowers. Credit: McMaster University"

The form of the cell can mean zero or one. The third form can mean. That the system must wait for the new cell. 

In DNA-based data storage, the system can use the forms that genetically engineered cells can take to transmit data to an AI-based operating system. 

If we think of the possibility of creating DNA-based data storage. There is one simple way to create that thing without the need to read the DNA. DNA-controlled viruses or cells can take a series of certain forms. There is a need for two or three forms if the DNA-based data storage uses binary data storage. 

Those forms like "star" can mean one, and "square" can mean zero. And ring might mean that the DNA ends and the system must wait for the next cell or virus group. There can be two groups of cells. The other is dark and another has a genome for bioluminance. The system shares the data in two cell lines and it can use the luminance to see that the system has changed the cell. 

The other forms have let's say pink and red colors. And the other is green and yellow. In those systems, the data is stored in two lines. The system feeds the reading system. By using those lines one after one. A change of color or shine tells that the cell or virus group is changed. And that makes the reader collect data together. 

Or red sunflower can mean one and yellow sunflower can mean zero. The green sunflower can mean the end of the DNA. The system requires a microscope with a machine view to observe those structures. The operating system follows those images. That the cells or viruses can make. And then it can use the DNA as data storage in an easy way. 


https://scitechdaily.com/nature-inspired-viruses-form-living-sunflowers-to-combat-disease/


Comments

Popular posts from this blog

MIT's tractor beam can make the new types of SASER systems possible

   "This chip-based "tractor-beam," which uses an intensely focused beam of light to capture and manipulate biological particles without damaging the cells, could help biologists study the mechanisms of diseases."(Interesting Engineering, MIT’s Star Wars-inspired ‘tractor beam’ uses light to capture, manipulate cells) MIT's tractor beam can make the new types of SASER systems possible. The tractor beam just hovers the nanoparticle in air or medium, and then the laser or some other electromagnetic system transports oscillation into those particles. The ability to make cells and other particles hover in the system makes it possible to create particles whose energy level or resonance frequencies are accurately calculated things.  That thing makes it possible to create things that transmit wave movement accurately and cleanly. This is one version of the use of a tractor beam. Modern tractor beams are like acoustic tweezers where sound waves lock the object in its cr

The new observations tell that the thunderstorms form gamma-rays. That could make gamma-ray lasers possible.

  "An illustration of NASA’s research plane ER-2 flying over thunderstorms. Credit: University of Bergen / Mount Visual (CC BY 4.0), edited" (ScitechDaily, Surprising Discovery: NASA’s Retrofitted U2 Spy Plane Reveals Tropical Lightning Storms Are Radioactive) The new observations tell that the thunderstorms form gamma-rays. That could make gamma-ray lasers possible. The process has been observed by the NASA (Lockheed) ER-2 research plane, which is a modified U-2 spy plane. The gamma-ray formation in thunderstorms. Where lightning and electric fields release electrons that impact the air molecules and water droplets is an interesting thing. That thing opens the route to solving many mysteries.  "The general physics behind how thunderstorms create high-energy flashes of gamma radiation is not a mystery. As thunderstorms develop, swirling drafts drive water droplets, hail, and ice into a mixture that creates an electric charge much like rubbing a balloon on your shirt. Pos

Chinese innovations and space lasers are interesting combinations.

Above: "Tiangong is China's operational space station located in low Earth orbit. (Image credit: Alejomiranda via Getty Images)" (Scpace.com, China's space station, Tiangong: A complete guide) Chinese are close to making nuclear-powered spacecraft.  Almost every day, we can read about Chinese technical advances. So are, the Chinese more innovative than Western people? Or is there some kind of difference in culture and morale between Western and Chinese societies? The Chinese superiority in hypersonic technology is one of the things that tells something about the Chinese way of making things.  In China, the mission means. And the only thing that means is mission. That means that things like budgets and safety orders are far different from Western standards. If some project serves the Chinese communist party and PLA (People's Liberation Army) that guarantees unlimited resources for those projects. Chinese authorities must not care about the public opinion.  If we th