Skip to main content

Ultrasound-based Brain-Computer Interface is a breakthrough technology.

  Ultrasound-based Brain-Computer Interface is a breakthrough technology. 


Functional ultrasound (fUS) is the new way to make the functional BMI (Brain Machine Interface). The BMI is almost the same as BCI (Brain-Computer-Interface), where the controller uses a computer or machines using brain waves or some other details like brain area activation. The BCI can be BMI, but the main difference is in accuracy and methods of how the system detects the changes in brain activity. 

The BMI is less sophisticated than BCI. The full-scale BCI allows to write to be created using EEG. The BMI must only move the hands or feet of robots. And that means BMI is easier to make because it requires less accurate information. 

Normally, we can think that BCI is the keyboard. The operator is used by the EEG or some other method. If we want to control some machine, we can use it by using the keyboard. But that method is not very effective. For controlling machines, we have joysticks and VR gloves. 

That allows us to see how brains are operating. That system requires very highly accurate systems. However, the BMI requires only information on what brain area and sub-area is activating. 

The idea of the BMI is that the system searches the brain area activation. Another way to see what brain areas are activating is to follow the blood flow into certain brain areas. The system is easier to make than people think. The movements of the left hand come from certain brain areas in the right brain. And movement of the right hand comes from the left brain. 


"The latest advancements in Brain-Machine Interfaces feature functional ultrasound (fUS), a non-invasive technique for reading brain activity. This innovation has shown promising results in controlling devices with minimal delay and without the need for frequent recalibration. Credit: SciTechDaily.com" (ScitechDaily.com/Mind Control Breakthrough: Caltech’s Pioneering Ultrasound Brain–Machine Interface)


Ultrasound-based BMI is the newest technology in non-surgical BMI.  The ultasound systems detect changes in the brain blood flow in blood vessels. That thing allows the interface that be error-free in electromagnetic fields. 

Regular BCI used MRI (Magnetic Resonance Imaging) based systems. That makes them vulnerable to electromagnetic fields. Ultrasound-based 3D imaging systems also can detect changes in brain activity using ultrasound. And that thing is one step toward safe, easy-to-use, and non-surgical BMi systems. The accuracy of those systems that use the blood flow as the tool, and how to observe the changes in brain area activation is lower than EEG-based systems. 

BMI doesn't require very high accuracy. But if the user wants to write texts or something like that the user needs virtual keyboards. 

The virtual keyboard can be virtually very large. The BMI user can move the virtual robot hand on the screen. And that allows users to write things for computers. 

The other user interfaces fill the BMI. The speech-to-commands applications allow us to give spoken commands to computers and robots. Sometimes noisy environments or non-certain speech cause trouble for computers to understand commands. And that requires the virtual keyboards. 

But things like virtual keyboards and other kinds of tools can make this kind of system so accurate, that they are suitable for everyday work. The action-camera-based UI (User Interface) is a small media projector that projects images to the table. The system sees from the action camera which virtual button the user pushed. 

The VR-based UI uses a virtual keyboard that the user sees in VR glasses. Then the user must only move their fingers on air. The system just positions finger movements to the virtual keyboard by connecting data from action cameras. The system makes calibration using a couple of static points. Then it asks the person to point a finger on some letters. That kind of system can fill the BMI systems. And give it higher accuracy. 


https://scitechdaily.com/mind-control-breakthrough-caltechs-pioneering-ultrasound-brain-machine-interface/

Comments

Popular posts from this blog

Chinese innovations and space lasers are interesting combinations.

Above: "Tiangong is China's operational space station located in low Earth orbit. (Image credit: Alejomiranda via Getty Images)" (Scpace.com, China's space station, Tiangong: A complete guide) Chinese are close to making nuclear-powered spacecraft.  Almost every day, we can read about Chinese technical advances. So are, the Chinese more innovative than Western people? Or is there some kind of difference in culture and morale between Western and Chinese societies? The Chinese superiority in hypersonic technology is one of the things that tells something about the Chinese way of making things.  In China, the mission means. And the only thing that means is mission. That means that things like budgets and safety orders are far different from Western standards. If some project serves the Chinese communist party and PLA (People's Liberation Army) that guarantees unlimited resources for those projects. Chinese authorities must not care about the public opinion.  If we th

Iron Dome is one of the most effective air defense systems.

The Iron Dome is a missile defense system whose missiles operate with highly sophisticated and effective artificial intelligence. The power of this missile defense base is in selective fire. The system calculates the incoming missile's trajectory. And it shoots only missiles that will hit the inhabited area. The system saves missiles and focuses defense on areas that mean something. The system shares the incoming missiles in, maybe two groups. Another is harmless and another is harmful.  Things like killer drones are also problematic because their trajectories are harder to calculate than ballistic missiles. The thing that makes drones dangerous is that they can make masks for ballistic missiles. And even if those drones are slow, all of them must be shot down.  The thing is that the cooperation between drone swarms and ballistic missiles is the next danger in conflict areas. In the film, you can see how drones make light images of the skies. The killer drones can also carry LED li

The innovative shield that protects OSIRIS-APEX can also protect the new hypersonic aircraft.

"NASA’s OSIRIS-APEX spacecraft successfully completed its closest solar pass, protected by innovative engineering solutions and showing improvements in onboard instruments. Credit: NASA’s Goddard Space Flight Center/CI Lab" (ScitechDaily, Innovative Engineering Shields NASA’s OSIRIS-APEX During Close Encounter With the Sun) The OSIRIS-APEX probe travels close to the sun. The mission plan is to research the sun. And especially find things that can warn about solar storms. Solar storms are things that can danger satellites at the Earth orbiter. And the purpose of OSIRIS-APEX is to find the method of how to predict those solar storms. Another thing is that the OSIRIS-APEX tests the systems and materials that protect this probe against heat and plasma impacts.  The same technology. The researchers created for OSIRIS-APEX can used in the materials and structures. That protects satellites against nuclear explosions. That means this kind of system delivers information on how to prot