Skip to main content

The ability to decode neurons can connect a person straight with the net.

  The ability to decode neurons can connect a person straight with the net. 


The AI itself is an impressive tool. If the office uses general-AI-based technology. That means the director can simply give a "to-do" list to AI in the morning. And then the AI makes those things, like sending business letters to customers, and following that payments are made. 

But the AI allows us to create things like BCI (Brain-computer interfaces). Those interfaces link people straight with computers. The fully working BCI system allows people to make connections using brainwaves. And the BCI system makes technical telepathy possible. In those systems person can control robots using the brainwaves. 

The BCI means that the computers can decode thoughts. Then system can transmit those thoughts on the computer screen. The ability to control robots using brain waves is possible only when the system knows what a person thinks. The problem is this. If we control robots by using brainwaves most thoughts are not meant to control robots. We might accidentally think something that we don't dare to say. And then robots will do something that we don't mean. The AI should filter those dangerous things away from systems, meant for civilian use. 



New simulations can simulate neuron's work very effectively. And we can say that the laboratories are decoded neurons. This thing makes a very big advance in many technologies. The complete knowledge of the system is required for full control of it. Things like BCI (Brain-computer interfaces) and neuron-microchip hybrid systems control things like nanomachine swarms. 

The ability to transfer information directly between computers and neurons makes it possible to create new types of interfaces. In those interfaces, people control computers straight with their brainwaves. If we think that people use BCI interfaces when they operate with robots, that means the robot is like another body for a person. The person will not make a difference between the robot body and themselves. 

The BCI systems allow to creation of ultimate augmented reality. That connects a person straight to the internet. In some visions, the neural link-type of systems can interact with the Internet through mobile telephones. And when we are talking about augmented reality, we mean multilayer systems. In those systems, people can use robots as exobodies, but they can also operate in fully synthetic simulation. 

And that thing can revolutionize everything from surgery to military, games, and adult entertainment. In some dystopic visions, some game addicts can use so many BCI-based augmented reality levels that they lost in that virtual world. In the worst case, those people die of hunger and thirst, because they simply forget. That they are in virtual reality. But making those things and visions functional, the creators of those systems must know how neurons interact. 

When we think of half-organic microchips those microchips interact with neurons. If engineers can program neurons. That allows them to transfer complicated programs to small microchips that interact with the machines straight through their kernel. 

Same way, programmed neurons can control nano- or mini-machines. The problem with nanotechnology is that the nanomachines are too small to carry effective computers. There are two ways to handle that problem. The nanomachines can make WLAN-based swarms. Another version is that the nanomachines can use living neurons for handling their operations. 


https://scitechdaily.com/neurons-decoded-the-universal-workflow-powering-brain-insights/

Comments

Popular posts from this blog

Chinese innovations and space lasers are interesting combinations.

Above: "Tiangong is China's operational space station located in low Earth orbit. (Image credit: Alejomiranda via Getty Images)" (Scpace.com, China's space station, Tiangong: A complete guide) Chinese are close to making nuclear-powered spacecraft.  Almost every day, we can read about Chinese technical advances. So are, the Chinese more innovative than Western people? Or is there some kind of difference in culture and morale between Western and Chinese societies? The Chinese superiority in hypersonic technology is one of the things that tells something about the Chinese way of making things.  In China, the mission means. And the only thing that means is mission. That means that things like budgets and safety orders are far different from Western standards. If some project serves the Chinese communist party and PLA (People's Liberation Army) that guarantees unlimited resources for those projects. Chinese authorities must not care about the public opinion.  If we th

Iron Dome is one of the most effective air defense systems.

The Iron Dome is a missile defense system whose missiles operate with highly sophisticated and effective artificial intelligence. The power of this missile defense base is in selective fire. The system calculates the incoming missile's trajectory. And it shoots only missiles that will hit the inhabited area. The system saves missiles and focuses defense on areas that mean something. The system shares the incoming missiles in, maybe two groups. Another is harmless and another is harmful.  Things like killer drones are also problematic because their trajectories are harder to calculate than ballistic missiles. The thing that makes drones dangerous is that they can make masks for ballistic missiles. And even if those drones are slow, all of them must be shot down.  The thing is that the cooperation between drone swarms and ballistic missiles is the next danger in conflict areas. In the film, you can see how drones make light images of the skies. The killer drones can also carry LED li

The innovative shield that protects OSIRIS-APEX can also protect the new hypersonic aircraft.

"NASA’s OSIRIS-APEX spacecraft successfully completed its closest solar pass, protected by innovative engineering solutions and showing improvements in onboard instruments. Credit: NASA’s Goddard Space Flight Center/CI Lab" (ScitechDaily, Innovative Engineering Shields NASA’s OSIRIS-APEX During Close Encounter With the Sun) The OSIRIS-APEX probe travels close to the sun. The mission plan is to research the sun. And especially find things that can warn about solar storms. Solar storms are things that can danger satellites at the Earth orbiter. And the purpose of OSIRIS-APEX is to find the method of how to predict those solar storms. Another thing is that the OSIRIS-APEX tests the systems and materials that protect this probe against heat and plasma impacts.  The same technology. The researchers created for OSIRIS-APEX can used in the materials and structures. That protects satellites against nuclear explosions. That means this kind of system delivers information on how to prot