Skip to main content

How do the DNA-based sensors work?



The DNA-based sensors use the DNA molecule as the sensor. The idea is that the DNA molecule or its head can hover around the layer and act like the stylus of an old-time LP player. In some versions of DNA sensors, there could be an iron bite at the end of the molecule. There is a possibility to use that iron bite to measure the magnetic field. There is the possibility that the radio waves are pointed to a certain target through that iron stylus. 

The radio (maser) wave will shoot to the iron that drives those radio waves to a certain target. The system can observe the reflection. But if the iron bite slides above the magnetized or electrically stressed layer the system can measure the electricity in that stylus. Or the system can measure the position of the DNA relative to the level. That allows operators to see the differences in the shape of the layer. 

When the layer goes farther the magnetic effect on DNA is turning weaker. And that affects the position of the DNA. The idea is similar to the magnet that is connected to the libra. When the magnetic layer is below it the distance to the magnetic layer affects the pulling force of the magnet. 

There is a possibility to observe the differences in the length and position of the DNA molecules by using the laser microscope that can measure the changes in the forms of that molecule. In some other versions of DNA-based sensors, The DNA will position around the measurable object. The DNA tweezers are based on the idea that the electricity will pull the last base pairs of the DNA around the object. In that kind of nanotechnical system, electricity will conduct to the object that must transport. 

In the measuring system the DNA position over the measurable object. Then the DNA molecule would rotate around. And the laser microscope measures the changes in the position of the last base pairs of the molecule. In the last version the ion will be shot through the DNA molecule vertically and the effects of that thing can notice by searching the effect of that thing on the DNA. 

The idea is similar to fullerene nanotube-based sensors. In those sensors, the laser light will shoot sideways through the nanotube. When the particle moves through that tube. The sensor detects its shape by using laser light. And that kind of system can find many new things from the world of subatomic and atomic worlds. 


Image and sources: 


https://www.scientiststudy.com/2022/04/dna-based-detector-could-precisely.html


See also: Maser, laser


https://artificialintelligenceandindividuals.blogspot.com/


Comments

Popular posts from this blog

Chinese innovations and space lasers are interesting combinations.

Above: "Tiangong is China's operational space station located in low Earth orbit. (Image credit: Alejomiranda via Getty Images)" (Scpace.com, China's space station, Tiangong: A complete guide) Chinese are close to making nuclear-powered spacecraft.  Almost every day, we can read about Chinese technical advances. So are, the Chinese more innovative than Western people? Or is there some kind of difference in culture and morale between Western and Chinese societies? The Chinese superiority in hypersonic technology is one of the things that tells something about the Chinese way of making things.  In China, the mission means. And the only thing that means is mission. That means that things like budgets and safety orders are far different from Western standards. If some project serves the Chinese communist party and PLA (People's Liberation Army) that guarantees unlimited resources for those projects. Chinese authorities must not care about the public opinion.  If we th

Iron Dome is one of the most effective air defense systems.

The Iron Dome is a missile defense system whose missiles operate with highly sophisticated and effective artificial intelligence. The power of this missile defense base is in selective fire. The system calculates the incoming missile's trajectory. And it shoots only missiles that will hit the inhabited area. The system saves missiles and focuses defense on areas that mean something. The system shares the incoming missiles in, maybe two groups. Another is harmless and another is harmful.  Things like killer drones are also problematic because their trajectories are harder to calculate than ballistic missiles. The thing that makes drones dangerous is that they can make masks for ballistic missiles. And even if those drones are slow, all of them must be shot down.  The thing is that the cooperation between drone swarms and ballistic missiles is the next danger in conflict areas. In the film, you can see how drones make light images of the skies. The killer drones can also carry LED li

The innovative shield that protects OSIRIS-APEX can also protect the new hypersonic aircraft.

"NASA’s OSIRIS-APEX spacecraft successfully completed its closest solar pass, protected by innovative engineering solutions and showing improvements in onboard instruments. Credit: NASA’s Goddard Space Flight Center/CI Lab" (ScitechDaily, Innovative Engineering Shields NASA’s OSIRIS-APEX During Close Encounter With the Sun) The OSIRIS-APEX probe travels close to the sun. The mission plan is to research the sun. And especially find things that can warn about solar storms. Solar storms are things that can danger satellites at the Earth orbiter. And the purpose of OSIRIS-APEX is to find the method of how to predict those solar storms. Another thing is that the OSIRIS-APEX tests the systems and materials that protect this probe against heat and plasma impacts.  The same technology. The researchers created for OSIRIS-APEX can used in the materials and structures. That protects satellites against nuclear explosions. That means this kind of system delivers information on how to prot