Skip to main content

A short tale about quantum computers

https://gamesandtehories.blogspot.com/

Kimmo Huosionmaa

Biggest and the most difficult problems of creating the quantum computer are to make a processor, what can make real multitasking and making the command language for that thing. The idea of the regular computer is that it would use binary numbers one and zero for making its tasks. Use of those numbers is very simple. Number one is the thing when there is voltage in the wire, and zero is the situation that the wire inside the processor is without electricity.

The binary system, what is used in computers is the thing what is created by mathematicians like Johan von Neumann, for ENIAC computer. And after that, every single computer have used that kind of architecture. If there would be another programming architecture the computer would not able to handle the data, that is stored in the elder databases. If the system what is using zero and one would be replaced by some other would the elder databases become useless, and storing that data again is a very hard process.

Also, the system what would replace the binary code in processors is hard to create. But if there would be a regular computer as the translator for the commands, what would give to the quantum computer, that would make the dream true. There would be many problems with the screens, and how they handle the data, what comes from the quantum computer. The most difficult thing would be, that the output device will be slow, and the quantum computer is very fast in comparison with regular computers. The technology, what is planned to use in the production of quantum processor would make possible to create a compact computer, what can be installed in human-size robots.

The real life that means that the regular processor can make only one task per operand, what makes it very slow when we are handling very big databases. When we are thinking about multitasking in the operating systems like Windows there is one thing that has ever mentioned. The multitasking in those operating systems is virtual, what means that we can, of course, open many programs at the same time to screen, but the processor would handle them by one by one.

In the Windows that is done by the way, that the program would leave handler in the memory of the computer, and if the window is open, will the code of program very easy to find from memory. This means when the user uses another program, would the unused program remove most of its code from the memory, and a small part of it would leave as the trigger in the memory, and the user can activate the program by clicking the icon or window of the program. If the processor would be the quantum processor, those programs can run in real mode.

When we are thinking that some calculations would be done backward with a regular computer, that means the computer would switch between programs and calculation. Modern computers are very fast,  and that thing would not disturb anybody until the needed calculations are on a very massive scale. When computer calculates extreme long series like prime numbers by using Riemann's conjecture would there need to calculate billions of numbers.

And in that kind of cases, the calculation power of the modern computers would not be enough. If the computer would be cooled in the superconducting temperature, would that make it faster, but the thing what is needed is the real multitasking. The quantum computer would give the mathematicians ability to create extremely large simulations, and that gives also the ability to drive extremely large databases at very high speed, in the real world the system what uses real multitasking have been tried to make by creating processors, where is installed multiple processors in the structure, and that is called multi-core processor. Quantum processor would be used by using another computer, and in that case, the normal computer would translate the commands to the quantum processor. And that would be making that computer real thing.

Comments

Popular posts from this blog

Chinese innovations and space lasers are interesting combinations.

Above: "Tiangong is China's operational space station located in low Earth orbit. (Image credit: Alejomiranda via Getty Images)" (Scpace.com, China's space station, Tiangong: A complete guide) Chinese are close to making nuclear-powered spacecraft.  Almost every day, we can read about Chinese technical advances. So are, the Chinese more innovative than Western people? Or is there some kind of difference in culture and morale between Western and Chinese societies? The Chinese superiority in hypersonic technology is one of the things that tells something about the Chinese way of making things.  In China, the mission means. And the only thing that means is mission. That means that things like budgets and safety orders are far different from Western standards. If some project serves the Chinese communist party and PLA (People's Liberation Army) that guarantees unlimited resources for those projects. Chinese authorities must not care about the public opinion.  If we th

Iron Dome is one of the most effective air defense systems.

The Iron Dome is a missile defense system whose missiles operate with highly sophisticated and effective artificial intelligence. The power of this missile defense base is in selective fire. The system calculates the incoming missile's trajectory. And it shoots only missiles that will hit the inhabited area. The system saves missiles and focuses defense on areas that mean something. The system shares the incoming missiles in, maybe two groups. Another is harmless and another is harmful.  Things like killer drones are also problematic because their trajectories are harder to calculate than ballistic missiles. The thing that makes drones dangerous is that they can make masks for ballistic missiles. And even if those drones are slow, all of them must be shot down.  The thing is that the cooperation between drone swarms and ballistic missiles is the next danger in conflict areas. In the film, you can see how drones make light images of the skies. The killer drones can also carry LED li

The innovative shield that protects OSIRIS-APEX can also protect the new hypersonic aircraft.

"NASA’s OSIRIS-APEX spacecraft successfully completed its closest solar pass, protected by innovative engineering solutions and showing improvements in onboard instruments. Credit: NASA’s Goddard Space Flight Center/CI Lab" (ScitechDaily, Innovative Engineering Shields NASA’s OSIRIS-APEX During Close Encounter With the Sun) The OSIRIS-APEX probe travels close to the sun. The mission plan is to research the sun. And especially find things that can warn about solar storms. Solar storms are things that can danger satellites at the Earth orbiter. And the purpose of OSIRIS-APEX is to find the method of how to predict those solar storms. Another thing is that the OSIRIS-APEX tests the systems and materials that protect this probe against heat and plasma impacts.  The same technology. The researchers created for OSIRIS-APEX can used in the materials and structures. That protects satellites against nuclear explosions. That means this kind of system delivers information on how to prot