Skip to main content

The waving light over kagome metals

'



"A diagram of the Kagome metal cesium vanadium antimonide showing plasmon waves moving through the material. Credit: Guangxin Ni" (ScitechDaily, Weaving Light: Unraveling the Quantum Lattice of Kagome Metals)


Graphene is not the only interesting 2D material in the world. The metal combinations called Kagome metals can also create the 2D metal structure. Kagome metals have a triangular 2D shape. That shape is like Kagome. The optical Kagome lattices are always interesting, but modern technology can make it possible to create Kagome nanostructures. The plasmons that travel through that structure make it possible to manipulate the nano-scale optical abilities of that material. 

The Kagome metals can used to aim electric impulses to the target. The Kagome structure can collect electromagnetic waves from the air. And then aim it at one point. That thing requires that Kagome. Which collects radiation and has a triangular shape. This thing allows us to transmit information and energy into plasmon. And that manipulates plasma oscillation. 

The system can collect energy from plasmon. That travels in it, into one point. And plasmons that travel in 2D Kagome metal structure, can manipulate light waves over the lattice. In this process, the laser beam that injects energy into the plasmon can form waves in the Kagome lattice. The thing is that those light waves can used to give new abilities for new quantum materials. 

Wikipedia describes plasmons like this: "In physics, a plasmon is a quantum of plasma oscillation. Just as light (an optical oscillation) consists of photons, the plasma oscillation consists of plasmons. The plasmon can be considered as a quasiparticle since it arises from the quantization of plasma oscillations, just like phonons are quantizations of mechanical vibrations." (Wikipedia, Plasmon)



Above: Optical Kagome. 


Thus, plasmons are collective (a discrete number) oscillations of the free electron gas density. For example, at optical frequencies, plasmons can couple with a photon to create another quasiparticle called a plasmon polariton. The field of study and manipulation of plasmons is called plasmonics." (Wikipedia, Plasmon)

"In physics, polaritons are quasiparticles resulting from strong coupling of electromagnetic waves with an electric or magnetic dipole-carrying excitation.[example needed] They are an expression of the common quantum phenomenon known as level repulsion, also known as the avoided crossing principle. Polaritons describe the crossing of the dispersion of light with any interacting resonance. " (Wikipedia, Polariton)

"To this extent, polaritons can also be thought of as the new normal modes of a given material or structure arising from the strong coupling of the bare modes, which are the photon and the dipolar oscillation. The polariton is a bosonic quasiparticle, and should not be confused with the polaron (a fermionic quasiparticle), which is an electron plus an attached phonon cloud." (Wikipedia, Polariton)

Researchers noticed the plasmons that travel through Kagome metal called Cesium-Vanadium-Antimonide (CsV3Sb5) cause light waves above that structure. That knowledge is interesting in nano-optics. The nano-optical phenomenon opens new routes in new optical systems. That makes new and smaller robots possible. However, the ability to control those light waves makes it possible to create structures. That is invisible to the human eye. The idea is that plasmons can manipulate the wavelength of the reflecting light. 


https://scitechdaily.com/weaving-light-unraveling-the-quantum-lattice-of-kagome-metals/


https://en.wikipedia.org/wiki/Plasmon


https://en.wikipedia.org/wiki/Polariton

Comments

Popular posts from this blog

MIT's tractor beam can make the new types of SASER systems possible

   "This chip-based "tractor-beam," which uses an intensely focused beam of light to capture and manipulate biological particles without damaging the cells, could help biologists study the mechanisms of diseases."(Interesting Engineering, MIT’s Star Wars-inspired ‘tractor beam’ uses light to capture, manipulate cells) MIT's tractor beam can make the new types of SASER systems possible. The tractor beam just hovers the nanoparticle in air or medium, and then the laser or some other electromagnetic system transports oscillation into those particles. The ability to make cells and other particles hover in the system makes it possible to create particles whose energy level or resonance frequencies are accurately calculated things.  That thing makes it possible to create things that transmit wave movement accurately and cleanly. This is one version of the use of a tractor beam. Modern tractor beams are like acoustic tweezers where sound waves lock the object in its cr

The new observations tell that the thunderstorms form gamma-rays. That could make gamma-ray lasers possible.

  "An illustration of NASA’s research plane ER-2 flying over thunderstorms. Credit: University of Bergen / Mount Visual (CC BY 4.0), edited" (ScitechDaily, Surprising Discovery: NASA’s Retrofitted U2 Spy Plane Reveals Tropical Lightning Storms Are Radioactive) The new observations tell that the thunderstorms form gamma-rays. That could make gamma-ray lasers possible. The process has been observed by the NASA (Lockheed) ER-2 research plane, which is a modified U-2 spy plane. The gamma-ray formation in thunderstorms. Where lightning and electric fields release electrons that impact the air molecules and water droplets is an interesting thing. That thing opens the route to solving many mysteries.  "The general physics behind how thunderstorms create high-energy flashes of gamma radiation is not a mystery. As thunderstorms develop, swirling drafts drive water droplets, hail, and ice into a mixture that creates an electric charge much like rubbing a balloon on your shirt. Pos

Chinese innovations and space lasers are interesting combinations.

Above: "Tiangong is China's operational space station located in low Earth orbit. (Image credit: Alejomiranda via Getty Images)" (Scpace.com, China's space station, Tiangong: A complete guide) Chinese are close to making nuclear-powered spacecraft.  Almost every day, we can read about Chinese technical advances. So are, the Chinese more innovative than Western people? Or is there some kind of difference in culture and morale between Western and Chinese societies? The Chinese superiority in hypersonic technology is one of the things that tells something about the Chinese way of making things.  In China, the mission means. And the only thing that means is mission. That means that things like budgets and safety orders are far different from Western standards. If some project serves the Chinese communist party and PLA (People's Liberation Army) that guarantees unlimited resources for those projects. Chinese authorities must not care about the public opinion.  If we th