Skip to main content

New nanotechnology and magnetism make new and more practical quantum computers possible.


"Researchers at the Cavendish Laboratory have identified spin coherence in atomic defects within Hexagonal Boron Nitride (hBN) under ambient conditions, a rare achievement in quantum materials. The study, published in Nature Materials, highlights that these spins can be controlled with light and have promising implications for future quantum technologies, including sensing and secure communications. " (ScitechDaily, Cambridge Scientists Achieve Long-Sought Quantum State Stability in New 2D Material)

The findings also stress the need for further exploration to enhance defect reliability and extend spin storage times, underlining the potential of hBN in advancing quantum technological applications. Credit: Eleanor Nichols, Cavendish Laboratory" (ScitechDaily, Cambridge Scientists Achieve Long-Sought Quantum State Stability in New 2D Material)


The Cambridge researchers created a new way to make a stable quantum state in 3D material. The normal problem with quantum systems is how to stabilize the quantum states. The new method to create quantum entanglement is to use electrons and their holes. In some visions in the middle of the graphene network is electrons. And if the other side is graphene where are the holes for those electrons? The system can make advanced and effective quantum processors with multiple states. 

A new way to make quantum computers is the quantum entanglement between electrons and their holes. The electron and hole are things that can form excitons. And if the system can halt the position of the electron, that orbits its hole, that thing can make it possible to create the new and long-standing quantum entanglement. The excitons can form in the Rydberg's atoms. That makes it possible to create smaller ones. And more powerful, or at least more complex quantum systems. 

Nanotechnology and new magnetism can suppress the outcoming effects in quantum systems. The new and more complex quantum computers require AI-based support systems. And especially the new types of sensors. Those new sensors tell things about the quantum entanglement conditions. In quantum computers, the AI-based operating system can operate the system remotely. The sensors tell about the operations and conditions of the quantum entanglement.



"Altermagnetic crystal: not only the directions of spin polarization (in magenta and cyan) alternate on neighboring magnetic atoms, but also the atomic shapes themselves – as shown by tilting the dumbbell-shaped electron densities in two different directions. The blue beamline illustrates the photoemission experiment on a synchrotron that was used to demonstrate altermagnetism. Credit: Libor Šmejkal und Anna Birk Hellenes / JGU" (ScitechDaily, Revolutionary Discovery: Scientists Prove Existence of New Type of Magnetism)

Because without precise information the operating system cannot handle and control quantum systems. The revolutionary micro-capacitors make it possible for the sensors can operate autonomously. The microsensors on the quantum system can operate as the morphing neural network. That means the operating system might have at least two states. 

The reflex system uses nanosensors' memories and the long-distance system that drives information into the quantum system. The reflex system is less complicated. And its mission is to keep the temperature in the system at a certain level. The sensors can also tell if some outside effect is extraordinarily strong. And the quantum system can retake the calculation. 

How to protect information from outcoming turbulence? Is a key information transport element in quantum information systems. 

"New microcapacitor technology developed at Berkeley Lab enhances energy storage capabilities on microchips, marking a major advancement in microelectronics. Credit: SciTechDaily" (ScitechDaily, Tiny Titans: Revolutionary Microcapacitors Set to Supercharge Next-Gen Electronics)

Organic electric silk tubes and a new state of magnetism are the tools that can make quantum information transport safer than ever before. 

Organic spider silk can be a new tool for biological sensors. The hollow fibers can operate as electric wires. And they can be printed on the new microchips. The hollow fiber can used as a sensor. As well as an electric wire. If the laser ray travels through the fiber, it can sense changes in its shape. When something presses the silk tube the shape of the laser ray changes, the laser ray sees that something has closed its road. The laser ray can measure the point where that anomaly is with very high accuracy. Using its distance measure ability. 

The new type of magnetism called "altermagnetism" is a tool that can revolutionize quantum and information technologies. The altermagnetism cannot detected from outside. And that allows to transmission of information in very highly secured channels. Atermagnetism can also used to protect quantum tubes, where information travels. The altermagnetic tube can cover the nanotube, where the quantum system transports information.


https://scitechdaily.com/cambridge-scientists-achieve-long-sought-quantum-state-stability-in-new-2d-material/


https://scitechdaily.com/tiny-titans-revolutionary-microcapacitors-set-to-supercharge-next-gen-electronics/


https://scitechdaily.com/revolutionary-discovery-scientists-prove-existence-of-new-type-of-magnetism/


https://scitechdaily.com/electronic-spider-silk-sensors-revolutionizing-bioelectronics-with-eco-friendly-technology/


https://en.wikipedia.org/wiki/Altermagnetism

Comments

Popular posts from this blog

MIT's tractor beam can make the new types of SASER systems possible

   "This chip-based "tractor-beam," which uses an intensely focused beam of light to capture and manipulate biological particles without damaging the cells, could help biologists study the mechanisms of diseases."(Interesting Engineering, MIT’s Star Wars-inspired ‘tractor beam’ uses light to capture, manipulate cells) MIT's tractor beam can make the new types of SASER systems possible. The tractor beam just hovers the nanoparticle in air or medium, and then the laser or some other electromagnetic system transports oscillation into those particles. The ability to make cells and other particles hover in the system makes it possible to create particles whose energy level or resonance frequencies are accurately calculated things.  That thing makes it possible to create things that transmit wave movement accurately and cleanly. This is one version of the use of a tractor beam. Modern tractor beams are like acoustic tweezers where sound waves lock the object in its cr

The new observations tell that the thunderstorms form gamma-rays. That could make gamma-ray lasers possible.

  "An illustration of NASA’s research plane ER-2 flying over thunderstorms. Credit: University of Bergen / Mount Visual (CC BY 4.0), edited" (ScitechDaily, Surprising Discovery: NASA’s Retrofitted U2 Spy Plane Reveals Tropical Lightning Storms Are Radioactive) The new observations tell that the thunderstorms form gamma-rays. That could make gamma-ray lasers possible. The process has been observed by the NASA (Lockheed) ER-2 research plane, which is a modified U-2 spy plane. The gamma-ray formation in thunderstorms. Where lightning and electric fields release electrons that impact the air molecules and water droplets is an interesting thing. That thing opens the route to solving many mysteries.  "The general physics behind how thunderstorms create high-energy flashes of gamma radiation is not a mystery. As thunderstorms develop, swirling drafts drive water droplets, hail, and ice into a mixture that creates an electric charge much like rubbing a balloon on your shirt. Pos

Chinese innovations and space lasers are interesting combinations.

Above: "Tiangong is China's operational space station located in low Earth orbit. (Image credit: Alejomiranda via Getty Images)" (Scpace.com, China's space station, Tiangong: A complete guide) Chinese are close to making nuclear-powered spacecraft.  Almost every day, we can read about Chinese technical advances. So are, the Chinese more innovative than Western people? Or is there some kind of difference in culture and morale between Western and Chinese societies? The Chinese superiority in hypersonic technology is one of the things that tells something about the Chinese way of making things.  In China, the mission means. And the only thing that means is mission. That means that things like budgets and safety orders are far different from Western standards. If some project serves the Chinese communist party and PLA (People's Liberation Army) that guarantees unlimited resources for those projects. Chinese authorities must not care about the public opinion.  If we th