"An artist’s representation of a scanning tunneling microscope probing a toluene molecule. Credit: Dr. Kristina Rusimova, Hannah Martin, and Pieter Keenan" (ScitechDaily, Breakthrough in Nanotechnology Unlocks Atomic Precision for Medicine and Energy)
The new observation tools like X-ray microscopes and scanning tunneling microscopes make it possible for researchers to see things that happen inside atoms. The limit of microscopes is the radiation wavelength that the microscope sees. And the microscope cannot see objects whose diameter is smaller than the observation radiation tool's wavelength. New microscopes see things like structures from individual protons and neutrons.
The limit for observation tools like scanning tunneling microscopes (STM) is the size of the particle the system uses to scan objects. The STM hovers particles between the layer and the stylus. The changes in the quantum fields around that hovering object tell about the layer that the system scans.
The particle that hovers between an object and a stylus is the limit of the resolution of the scanning tunneling microscope. And if the system can hover gluon or quark between it and its target. That thing forms the system that resolution is so high, that it can help to move single protons, neutrons, electrons, and other things like quarks.
The quantum entanglement makes it possible to hover single photons above the target. Things like gamma-ray microscopes can give even more high-resolution images of atoms and their particles. But the problem is how to produce gamma rays and turn them into coherent radiation.
The ability to see an object makes it possible to manipulate it. That thing is extremely important in nanotechnology. The nanomachines and nano-tools are systems that are based on atomic-size components. The system means precisely selected and positioned atomic structures in molecules.
The system requires highly advanced manipulation systems. And highly advanced learning neural networks. That can collect and process data from multiple sources. Those things are important for building long-chain molecules and complex molecular structures. Those systems can make it possible to create a revolution in medicine, material research, and manufacturing. The nanomachines are tools that can make many things possible.
"Data from past proton-electron collisions provide strong evidence of entanglement among the proton’s sea of quarks (spheres) and gluons (squiggles), which may play an important role in their strong-force interactions. Credit: Valerie Lentz/Brookhaven National Laboratory" (ScitechDaily, “Spooky Action” at Ultra-Short Distances: Unlocking the Quantum Core of Matter)
Quantum materials are even more impressive than nanotechnology.
Nanotechnology can create materials that can fix themselves. Or they can create. Things like 2D neutron graphene. The neutron-graphene is a theoretical material that is like graphene but it's formed of neutrons. That material forms the neutron stars.
The 2D neutron graphene has one problem. The free neutron decay time is about 15 minutes. But it's possible to trap this neutron network between two layers that could be graphene. Then the system must press energy to those neutrons to deny their decay. But that thing is purely hypothetical material. The idea is that all materials and their parts can be put in 2D form if they are polar.
In the most futuristic visions. The quarks can form similar networks. As neutrons form in neutron stars. The ability to see single quarks makes that kind of material possible. However, theory is not a practical solution. Locking those particles is very difficult.
But if the system can lock particles like neutrons or quarks into the nanonet and inject energy into them. That makes it possible to create the maser system that sends radiation with the same wavelength as the size of the particles. So those systems can make it possible to create neutron-radiation masers. Or the masers that wavelength is the same as the quark's dimension.
The superconductivity between quarks could be a useful thing. In nano-size systems. The quark superconductivity can form because quarks are in the same quantum field. If electricity travels in the quantum field that hovers above particles. There is no Hall effect or Hall field. The Hall effect or resistance forms in the standing waves between particles.
When electricity tries to travel through those waves it must pack so much power that it can travel through those waves. Those waves pull part of that electricity into it. And if that standing potential field does not exist there is no resistance. The quantum field that continues over particles in a straight form makes that structure superconducting.
But theoretically. the protons can also make similar networks. The problem is that. They require some kind of glue between them to keep protons in their form.
Theoretically is possible to create things called 2D atoms. In those quantum materials, the protons and neutrons form the ring. Like carbon atoms are in graphene. The protons and neutrons are in turn at that ring. That kind of structure can be very strong.
https://scitechdaily.com/breakthrough-in-nanotechnology-unlocks-atomic-precision-for-medicine-and-energy/
https://scitechdaily.com/cracking-the-proton-code-unveiling-the-secrets-of-the-universes-building-blocks/
https://scitechdaily.com/neutron-stars-illuminate-the-hidden-physics-of-quark-superconductivity/
https://scitechdaily.com/spooky-action-at-ultra-short-distances-unlocking-the-quantum-core-of-matter/
https://en.wikipedia.org/wiki/Hall_effect